81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Memory effects in complex materials and nanoscale systems

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Memory effects are ubiquitous in nature and are particularly relevant at the nanoscale where the dynamical properties of electrons and ions strongly depend on the history of the system, at least within certain time scales. We review here the memory properties of various materials and systems which appear most strikingly in their non-trivial time-dependent resistive, capacitative and inductive characteristics. We describe these characteristics within the framework of memristors, memcapacitors and meminductors, namely memory circuit elements whose properties depend on the history and state of the system. We examine basic issues related to such systems and critically report on both theoretical and experimental progress in understanding their functionalities. We also discuss possible applications of memory effects in various areas of science and technology ranging from digital to analog electronics, biologically-inspired circuits, and learning. We finally discuss future research opportunities in the field.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spintronics: Fundamentals and applications

          Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistive switching in transition metal oxides

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential and challenges of nanopore sequencing.

              A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
                Bookmark

                Author and article information

                Journal
                12 November 2010
                Article
                10.1080/00018732.2010.544961
                1011.3053
                3e3e638c-03fa-485a-81e7-5989f9129bfe

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Advances in Physics 60, pages 145-227 (2011)
                Review submitted to Advances in Physics
                cond-mat.mes-hall

                Comments

                Comment on this article