4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample

      , , , ,
      Foods
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Although xenobiotics from food processing have gained support as possible drivers of the relationship between diet and some types of cancer, there are still few studies characterizing the intake of these compounds among different populations. Aim: To describe the intake of heterocyclic amines (HAs), polycyclic aromatic hydrocarbons (PAHs), nitrates, nitrites, nitrosamines, and acrylamide; and to identify dietary and lifestyle related factors. Methods: This was a descriptive cross-sectional study in 70 adult volunteers. Intake was registered by means of a food frequency questionnaire, including cooking methods, temperature, and degree of browning. The European Prospective Investigation into Cancer (EPIC) and the Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease (CHARRED) databases were used for xenobiotic estimation in conjunction with data from the European Food Safety Authority (EFSA) and U.S. Food and Drug Administration (FDA). Results: Dietary HAs (amino-alpha-carboline (AαC), 2-amino-3-methylimidazo (4,5,f) quinoline (IQ), 2-amino-3,8 dimethylimidazo (4,5,f) quinoxaline (MeIQx), 2-amino-3,4,8 trime-thylimidazo (4,5,f) quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo (4,5,b) pyridine (PhIP)) were mainly derived from meat and meat products, while benzo (a) pyrene (B(a)P), dibenzo (a) anthracene (DiB(a)A), and total PAHs were explained by oils and fats, alcoholic beverages, and milk, respectively. Microwaved, fried, grilled, broiled, barbecued, and braised cooking methods were mainly responsible for HAs and PAHs consumption. Conclusion: Based on the wide presence and levels of intake of these compounds in different sources, more efforts should be made to adjust their intake to the levels recommended by health agencies.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phenol-Explorer: an online comprehensive database on polyphenol contents in foods

          A number of databases on the plant metabolome describe the chemistry and biosynthesis of plant chemicals. However, no such database is specifically focused on foods and more precisely on polyphenols, one of the major classes of phytochemicals. As antoxidants, polyphenols influence human health and may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, some cancers or type 2 diabetes. To determine polyphenol intake in populations and study their association with health, it is essential to have detailed information on their content in foods. However this information is not easily collected due to the variety of their chemical structures and the variability of their content in a given food. Phenol-Explorer is the first comprehensive web-based database on polyphenol content in foods. It contains more than 37 000 original data points collected from 638 scientific articles published in peer-reviewed journals. The quality of these data has been evaluated before they were aggregated to produce final representative mean content values for 502 polyphenols in 452 foods. The web interface allows making various queries on the aggregated data to identify foods containing a given polyphenol or polyphenols present in a given food. For each mean content value, it is possible to trace all original content values and their literature sources. Phenol-Explorer is a major step forward in the development of databases on food constituents and the food metabolome. It should help researchers to better understand the role of phytochemicals in the technical and nutritional quality of food, and food manufacturers to develop tailor-made healthy foods. Database URL: http://www.phenol-explorer.eu
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The functional gastrointestinal disorders and the Rome III process.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition.

              Current evidence suggests that high red meat intake is associated with increased colorectal cancer risk. High fish intake may be associated with a decreased risk, but the existing evidence is less convincing. We prospectively followed 478 040 men and women from 10 European countries who were free of cancer at enrollment between 1992 and 1998. Information on diet and lifestyle was collected at baseline. After a mean follow-up of 4.8 years, 1329 incident colorectal cancers were documented. We examined the relationship between intakes of red and processed meat, poultry, and fish and colorectal cancer risk using a proportional hazards model adjusted for age, sex, energy (nonfat and fat sources), height, weight, work-related physical activity, smoking status, dietary fiber and folate, and alcohol consumption, stratified by center. A calibration substudy based on 36 994 subjects was used to correct hazard ratios (HRs) and 95% confidence intervals (CIs) for diet measurement errors. All statistical tests were two-sided. Colorectal cancer risk was positively associated with intake of red and processed meat (highest [>160 g/day] versus lowest [ 80 g/day versus <10 g/day, HR = 0.69, 95 % CI = 0.54 to 0.88; Ptrend<.001), but was not related to poultry intake. Correcting for measurement error strengthened the associations between colorectal cancer and red and processed meat intake (per 100-g increase HR = 1.25, 95% CI =1.09 to 1.41, Ptrend = .001 and HR = 1.55, 95% CI = 1.19 to 2.02, Ptrend = .001 before and after calibration, respectively) and for fish (per 100 g increase HR = 0.70, 95% CI = 0.57 to 0.87, Ptrend<.001 and HR = 0.46, 95% CI = 0.27 to 0.77, Ptrend = .003; before and after correction, respectively). In this study population, the absolute risk of development of colorectal cancer within 10 years for a study subject aged 50 years was 1.71% for the highest category of red and processed meat intake and 1.28% for the lowest category of intake and was 1.86% for subjects in the lowest category of fish intake and 1.28% for subjects in the highest category of fish intake. Our data confirm that colorectal cancer risk is positively associated with high consumption of red and processed meat and support an inverse association with fish intake.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                FOODBV
                Foods
                Foods
                MDPI AG
                2304-8158
                February 2022
                February 05 2022
                : 11
                : 3
                : 470
                Article
                10.3390/foods11030470
                35159620
                3e457f1f-e58c-4d6c-b6a8-94fa84b79ed1
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article