17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of Yap in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors. We further show that epithelial deletion of the Lats1 and Lats2 genes, which encode kinases that restrict nuclear Yap localization, results in morphogenesis defects accompanied by an expansion of Krt5/Krt14-positive cells. Collectively, our data indicate that Yap-induced Epiregulin signaling promotes the identity of SMG ductal progenitors and that removal of nuclear Yap by Lats1/2-mediated signaling is critical for proper ductal maturation.

          DOI: http://dx.doi.org/10.7554/eLife.23499.001

          eLife digest

          Our mouths are continually bathed by saliva – a thick, clear liquid that helps us to swallow and digest our food and protects us against infections. Saliva is produced by and released from salivary glands, which are organs that contain a branched network of tubes. Salivary glands can only properly develop if immature cells known as stem cells, which give rise to the mature cells in the organ, are controlled. Despite their importance for development of salivary glands, little has been known about the signals that control these stem cells.

          Szymaniak et al. have now discovered new regulators of the salivary gland stem cells in mice, including essential roles in the regulation of these cells by a protein known as Yap. The Yap protein is controlled by a set of proteins that together are known as the Hippo pathway. Szymaniak et al. found that when the gene for Yap was deleted in mice very few stem cells were made, and the transport tubes of the salivary tubes failed to develop. Conversely, when the Hippo pathway was disrupted in mice there were too many stem cells because they could not properly develop into the mature cells, leading to incorrect transport tube development..

          These results indicate that Yap is essential for controlling the stem cells of the salivary glands, and offer important insight into the signals that control how the salivary glands develop. The next step will be to investigate whether the Hippo pathway or Yap are affected in diseases of the salivary gland, which often show incorrect numbers of stem cells.

          DOI: http://dx.doi.org/10.7554/eLife.23499.002

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.

          The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the β-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from the destruction complex, allowing their nuclear accumulation and activation of Wnt/YAP/TAZ-dependent biological effects. YAP/TAZ are required for intestinal crypt overgrowth induced by APC deficiency and for crypt regeneration ex vivo. In Wnt-OFF cells, YAP/TAZ are essential for β-TrCP recruitment to the complex and β-catenin inactivation. In Wnt-ON cells, release of YAP/TAZ from the complex is instrumental for Wnt/β-catenin signaling. In line, the β-catenin-dependent maintenance of ES cells in an undifferentiated state is sustained by loss of YAP/TAZ. This work reveals an unprecedented signaling framework relevant for organ size control, regeneration, and tumor suppression. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway.

            The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-β-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-β signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-β signaling. Accordingly, disruption of the Crumbs complex enhances TGF-β signaling and predisposes cells to TGF-β-mediated epithelial-to-mesenchymal transitions. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease.

              Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                11 May 2017
                2017
                : 6
                : e23499
                Affiliations
                [1 ]deptDepartment of Biochemistry , Boston University School of Medicine , Boston, United States
                [2 ]deptDepartment of Molecular and Cell Biology , Boston University School of Dental Medicine , Boston, United States
                [3 ]deptClinical and Translational Science Institute , Boston University , Boston, United States
                [4 ]deptImmunology Research , Biogen , Cambridge, United States
                MRC Centre for Regenerative Medicine, University of Edinburgh , United Kingdom
                MRC Centre for Regenerative Medicine, University of Edinburgh , United Kingdom
                Author notes
                Author information
                http://orcid.org/0000-0002-2882-4541
                Article
                23499
                10.7554/eLife.23499
                5466420
                28492365
                3e4b4863-90c8-482c-b749-ea7e7c00ec52
                © 2017, Szymaniak et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 22 November 2016
                : 08 May 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000912, March of Dimes Foundation;
                Award ID: 1-FY14-219
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000050, National Heart, Lung, and Blood Institute;
                Award ID: R01 HL124392
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100003392, Sjogren's Syndrome Foundation;
                Award ID: Research Grant
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000072, National Institute of Dental and Craniofacial Research;
                Award ID: R21 DE024954
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100006108, National Center for Advancing Translational Sciences;
                Award ID: UL1-TR001430
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Developmental Biology and Stem Cells
                Custom metadata
                2.5
                The transcriptional regulator YAP directs the specification and differentiation of stem cells that give rise to salivary gland ductal epithelium.

                Life sciences
                salivary gland,hippo pathway,yap,stem cells,epithelial cells,differentiation,mouse
                Life sciences
                salivary gland, hippo pathway, yap, stem cells, epithelial cells, differentiation, mouse

                Comments

                Comment on this article