Blog
About

85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis

      a,b , a,b

      mBio

      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe ( bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δ bfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria.

          IMPORTANCE

          Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: not found
          • Article: not found

          Ferrozine---a new spectrophotometric reagent for iron

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular electron transfer via microbial nanowires.

            Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.

              Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                15 January 2013
                Jan-Feb 2013
                : 4
                : 1
                Affiliations
                BioTechnology Institute [ a ] and
                Department of Microbiology, [ b ] University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
                Author notes
                Address correspondence to Jeffrey A. Gralnick, gralnick@ 123456umn.edu .

                Editor Dianne Newman, California Institute of Technology/HHMI

                Article
                mBio00553-12
                10.1128/mBio.00553-12
                3551548
                23322638
                Copyright © 2013 Kotloski and Gralnick.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 4
                Categories
                Observation
                Custom metadata
                January/February 2013

                Life sciences

                Comments

                Comment on this article