23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identification of loci or genes under natural selection is important for both understanding the genetic basis of local adaptation and practical applications, and genome scans provide a powerful means for such identification purposes. In this study, genome-wide simple sequence repeats markers (SSRs) were used to scan for molecular footprints of divergent selection in Eucalyptus grandis, a hardwood species occurring widely in costal areas from 32° S to 16° S in Australia. High population diversity levels and weak population structure were detected with putatively neutral genomic SSRs. Using three F ST outlier detection methods, a total of 58 outlying SSRs were collectively identified as loci under divergent selection against three non-correlated climatic variables, namely, mean annual temperature, isothermality and annual precipitation. Using a spatial analysis method, nine significant associations were revealed between F ST outlier allele frequencies and climatic variables, involving seven alleles from five SSR loci. Of the five significant SSRs, two (EUCeSSR1044 and Embra394) contained alleles of putative genes with known functional importance for response to climatic factors. Our study presents critical information on the population diversity and structure of the important woody species E. grandis and provides insight into the adaptive responses of perennial trees to climatic variations.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The genome of Eucalyptus grandis.

          Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ubiquitin 26S proteasome proteolytic pathway.

            Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forest tree genomics: growing resources and applications.

              Over the past two decades, research in forest tree genomics has lagged behind that of model and agricultural systems. However, genomic research in forest trees is poised to enter into an important and productive phase owing to the advent of next-generation sequencing technologies, the enormous genetic diversity in forest trees and the need to mitigate the effects of climate change. Research on long-lived woody perennials is extending our molecular knowledge of complex life histories and adaptations to the environment - enriching a field that has traditionally drawn biological inference from a few short-lived herbaceous species.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                17 October 2016
                2016
                : 6
                : 34941
                Affiliations
                [1 ]State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry , Xiangshan Road, Beijing 100091, China
                [2 ]Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry , Longdong, Guangzhou 510520, China
                [3 ]Baoshan University , Yuanzheng Road, Baoshan 678000, China
                [4 ]College of Forestry, South China Agricultural University , 284 Block, Wushan Street, Guangzhou 510642, China
                [5 ]Guangdong Academy of Forestry , Longdong, Guangzhou 510520, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep34941
                10.1038/srep34941
                5066178
                27748400
                3e4f1558-5f94-431f-b2a8-d20bffcada21
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 May 2016
                : 20 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article