34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca 2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca 2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.

          Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STIM1, an essential and conserved component of store-operated Ca2+ channel function

            Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide.

              Suicide has a high prevalence in patients with schizophrenia and affective disorder. Our recent postmortem study [Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathologica (Berl) 2006;112:305-16.] revealed increased microglial densities in two schizophrenic patients who had committed suicide. Therefore, the hypothesis of microglial activation during acute psychosis was proposed. Alternatively, "suicide" could be a diagnosis-independent factor leading to microgliosis. To clarify this question, microglial HLA-DR expression was analyzed by immunohistochemistry in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), mediodorsal thalamus (MD) and hippocampus of 16 schizophrenics, 14 depressed patients with affective disorder and 10 matched controls. A subgroup of six schizophrenics and seven patients with affective disorder who committed suicide was included. ANOVA revealed no effect of diagnosis on microglial density (DLPFC: P=0.469; ACC: P=0.349; MD: P=0.569; hippocampus: P=0.497). However, significant microgliosis was observed in the DLPFC (P=0.004), ACC (P=0.012) and MD (P=0.004) of suicide patients. A similar trend was seen in the hippocampus (P=0.057). In conclusion, immunological factors may play a hitherto underestimated role in suicide. First, microglial activation might be interpreted as a consequence of presuicidal stress. Second, one might speculate a causal link between microglial activation and suicidal behaviour, such as neuroendocrine factors, cytokines, and nitric oxide, which are released from microglial cells and are known to modulate noradrenergic or serotonergic neurotransmission and thus may trigger suicidality.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                21 December 2015
                2015
                : 9
                : 492
                Affiliations
                [1] 1Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University , Chongqing, China
                [2] 2College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba , Winnipeg, MB, Canada
                [3] 3Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, MB, Canada
                [4] 4Department of Rehabilitation Medicine, Health Sciences Centre (HSC) , Winnipeg, MB, Canada
                Author notes

                Edited by: Johann Steiner, University of Magdeburg, Germany

                Reviewed by: Hans-Gert Bernstein, University of Magdeburg, Germany; Akira Monji, Saga University, Japan

                *Correspondence: Hongli Li, lihongli@ 123456tmmu.edu.cn ; Lan Xiao, xiaolan35@ 123456hotmail.com
                Article
                10.3389/fncel.2015.00492
                4685920
                26732345
                3e5a84e0-35bc-4bae-9b64-8614358ddfe6
                Copyright © 2015 Wang, Liu, Tian, Wu, He, Li, Namaka, Kong, Li and Xiao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 October 2015
                : 07 December 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 74, Pages: 11, Words: 7694
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31000482, 81471297
                Categories
                Neuroscience
                Original Research

                Neurosciences
                quetiapine,microglia,calcium homeostasis,stored-operated calcium entry,stromal interaction molecule 1

                Comments

                Comment on this article