58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Massively-parallel single nucleus RNA-seq with DroNc-seq

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single nucleus RNA-seq (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but does not provide the throughput required to analyse many cells from complex tissues. Here, we develop DroNc-seq, massively parallel sNuc-Seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient and unbiased classification of cell types, paving the way for systematic charting of cell atlases.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative Analysis of Single-Cell RNA Sequencing Methods.

          Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Maps of random walks on complex networks reveal community structure

            To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accounting for technical noise in single-cell RNA-seq experiments.

              Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                15 August 2017
                28 August 2017
                October 2017
                28 February 2018
                : 14
                : 10
                : 955-958
                Affiliations
                [1 ]Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge MA
                [2 ]Broad Institute of MIT and Harvard, Cambridge MA
                [3 ]McGovern Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA
                [4 ]John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
                [5 ]Department of Physics, Harvard University, Cambridge, MA
                [6 ]Howard Hughes Medical Institute, Department of Biology, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA
                Author notes
                [&]

                Current address: Department of Medicine, University of Chicago, Chicago IL; Center for Nanoscale Materials, Argonne National Laboratory, Lemont IL

                [*]

                These authors contributed equally to this work

                Article
                NIHMS898077
                10.1038/nmeth.4407
                5623139
                28846088
                3e5eb67c-8b54-4277-9323-b96f6a8eeaa3

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article