5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure and dynamics of lysozyme in DMSO–water binary mixture: fluorescence correlation spectroscopy

      , , ,
      RSC Advances
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Funnels, pathways, and the energy landscape of protein folding: a synthesis.

          The understanding, and even the description of protein folding is impeded by the complexity of the process. Much of this complexity can be described and understood by taking a statistical approach to the energetics of protein conformation, that is, to the energy landscape. The statistical energy landscape approach explains when and why unique behaviors, such as specific folding pathways, occur in some proteins and more generally explains the distinction between folding processes common to all sequences and those peculiar to individual sequences. This approach also gives new, quantitative insights into the interpretation of experiments and simulations of protein folding thermodynamics and kinetics. Specifically, the picture provides simple explanations for folding as a two-state first-order phase transition, for the origin of metastable collapsed unfolded states and for the curved Arrhenius plots observed in both laboratory experiments and discrete lattice simulations. The relation of these quantitative ideas to folding pathways, to uniexponential vs. multiexponential behavior in protein folding experiments and to the effect of mutations on folding is also discussed. The success of energy landscape ideas in protein structure prediction is also described. The use of the energy landscape approach for analyzing data is illustrated with a quantitative analysis of some recent simulations, and a qualitative analysis of experiments on the folding of three proteins. The work unifies several previously proposed ideas concerning the mechanism protein folding and delimits the regions of validity of these ideas under different thermodynamic conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving enzymes by using them in organic solvents.

            The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media. Studies over the past 15 years have revealed not only that this change in solvent is feasible, but also that in such seemingly hostile environments enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behaviour such as 'molecular memory'. Of particular importance has been the discovery that enzymatic selectivity, including substrate, stereo-, regio- and chemoselectivity, can be markedly affected, and sometimes even inverted, by the solvent. Enzyme-catalysed reactions in organic solvents, and even in supercritical fluids and the gas phase, have found numerous potential applications, some of which are already commercialized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques.

              Pulse field gradient NMR methods have been used to determine the effective hydrodynamic radii of a range of native and nonnative protein conformations. From these experimental data, empirical relationships between the measured hydrodynamic radius (R(h)) and the number of residues in the polypeptide chain (N) have been established; for native folded proteins R(h) = 4.75N (0.29)A and for highly denatured states R(h) = 2.21N (0.57)A. Predictions from these equations agree well with experimental data from dynamic light scattering and small-angle X-ray or neutron scattering studies reported in the literature for proteins ranging in size from 58 to 760 amino acid residues. The predicted values of the hydrodynamic radii provide a framework that can be used to analyze the conformational properties of a range of nonnative states of proteins. Several examples are given here to illustrate this approach including data for partially structured molten globule states and for proteins that are unfolded but biologically active under physiological conditions. These reveal evidence for significant coupling between local and global features of the conformational ensembles adopted in such states. In particular, the effective dimensions of the polypeptide chain are found to depend significantly on the level of persistence of regions of secondary structure or features such as hydrophobic clusters within a conformational ensemble.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2014
                2014
                : 4
                : 28
                : 14378
                Article
                10.1039/c4ra00719k
                3e744838-03a7-4972-b32b-333a0e4ff62c
                © 2014
                History

                Comments

                Comment on this article