6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of lovastatin-loaded poly(lactic acid) microspheres for sustained oral delivery: in vitro and ex vivo evaluation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A novel lovastatin (LVT)-loaded poly(lactic acid) microsphere suitable for oral administration was developed in this study, and in vitro and in vivo characteristics were evaluated.

          Methods

          The designed microspheres were obtained by an improved emulsion-solvent evaporation method. The morphological examination, particle size, encapsulation ratio, drug loading, and in vitro release were characterized. Pharmacokinetics studies were used to show that microspheres possess more advantages than the conventional formulations.

          Results

          By using the emulsion-solvent evaporation method, it was simple to prepare microspheres and easy to scale up production. The morphology of formed microspheres showed a spherical shape with a smooth surface, without any particle aggregation. Mean size of the microspheres was 2.65±0.69 μm; the encapsulation efficiency was 92.5%±3.6%, and drug loading was 16.7%±2.1%. In vitro release indicated that the LVT microspheres had a well-sustained release efficacy, and ex vivo studies showed that after LVT was loaded to microspheres, the area under the plasma concentration-time curve from zero to the last measurable plasma concentration point and the extrapolation to time infinity increased significantly, which represented 2.63-fold and 2.49-fold increases, respectively, compared to suspensions. The rate of ex vivo clearance was significantly reduced.

          Conclusion

          This research proved that poly(lactic acid) microspheres can significantly prolong the drug circulation time in vivo and can also significantly increase the relative bioavailability of the drug.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein.

           David Jenkins (2003)
          To enhance the effectiveness of diet in lowering cholesterol, recommendations of the Adult Treatment Panel III of the National Cholesterol Education Program emphasize diets low in saturated fat together with plant sterols and viscous fibers, and the American Heart Association supports the use of soy protein and nuts. To determine whether a diet containing all of these recommended food components leads to cholesterol reduction comparable with that of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). Randomized controlled trial conducted between October and December 2002. Forty-six healthy, hyperlipidemic adults (25 men and 21 postmenopausal women) with a mean (SE) age of 59 (1) years and body mass index of 27.6 (0.5), recruited from a Canadian hospital-affiliated nutrition research center and the community. Participants were randomly assigned to undergo 1 of 3 interventions on an outpatient basis for 1 month: a diet very low in saturated fat, based on milled whole-wheat cereals and low-fat dairy foods (n = 16; control); the same diet plus lovastatin, 20 mg/d (n = 14); or a diet high in plant sterols (1.0 g/1000 kcal), soy protein (21.4 g/1000 kcal), viscous fibers (9.8 g/1000 kcal), and almonds (14 g/1000 kcal) (n = 16; dietary portfolio). Lipid and C-reactive protein levels, obtained from fasting blood samples; blood pressure; and body weight; measured at weeks 0, 2, and 4 and compared among the 3 treatment groups. The control, statin, and dietary portfolio groups had mean (SE) decreases in low-density lipoprotein cholesterol of 8.0% (2.1%) (P =.002), 30.9% (3.6%) (P<.001), and 28.6% (3.2%) (P<.001), respectively. Respective reductions in C-reactive protein were 10.0% (8.6%) (P =.27), 33.3% (8.3%) (P =.002), and 28.2% (10.8%) (P =.02). The significant reductions in the statin and dietary portfolio groups were all significantly different from changes in the control group. There were no significant differences in efficacy between the statin and dietary portfolio treatments. In this study, diversifying cholesterol-lowering components in the same dietary portfolio increased the effectiveness of diet as a treatment of hypercholesterolemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences.

             H Lennernäs,  G Fager (1997)
            Hypercholesterolaemia plays a crucial role in the development of atherosclerotic diseases in general and coronary heart disease in particular. The risk of progression of the atherosclerotic process to coronary heart disease increases progressively with increasing levels of total serum cholesterol or low density lipoprotein (LDL) cholesterol at both the individual and the population level. The statins are reversible inhibitors of the microsomal enzyme HMG-CoA reductase, which converts HMG-CoA to mevalonate. This is an early rate-limiting step in cholesterol biosynthesis. Inhibition of HMG-CoA reductase by statins decreases intracellular cholesterol biosynthesis, which then leads to transcriptionally upregulated production of microsomal HMG-CoA reductase and cell surface LDL receptors. Subsequently, additional cholesterol is provided to the cell by de novo synthesis and by receptor-mediated uptake of LDL-cholesterol from the blood. This resets intracellular cholesterol homeostasis in extrahepatic tissues, but has little effect on the overall cholesterol balance. There are no simple methods to investigate the concentration-dependent inhibition of HMG-CoA reductase in human pharmacodynamic studies. The main clinical variable is plasma LDL-cholesterol, which takes 4 to 6 weeks to show a reduction after the start of statin treatment. Consequently, a dose-effect rather than a concentration-effect relationship is more appropriate to use in describing the pharmacodynamics. Fluvastatin, lovastatin, pravastatin and simvastatin have similar pharmacodynamic properties; all can reduce LDL-cholesterol by 20 to 35%, a reduction which has been shown to achieve decreases of 30 to 35% in major cardiovascular outcomes. Simvastatin has this effect at doses of about half those of the other 3 statins. The liver is the target organ for the statins, since it is the major site of cholesterol biosynthesis, lipoprotein production and LDL catabolism. However, cholesterol biosynthesis in extrahepatic tissues is necessary for normal cell function. The adverse effects of HMG-reductase inhibitors during long term treatment may depend in part upon the degree to which they act in extrahepatic tissues. Therefore, pharmacokinetic factors such as hepatic extraction and systemic exposure to active compound(s) may be clinically important when comparing the statins. Different degrees of liver selectivity have been claimed for the HMG-CoA reductase inhibitors. However, the literature contains confusing data concerning the degree of liver versus tissue selectivity. Human pharmacokinetic data are poor and incomplete, especially for lovastatin and simvastatin, and it is clear that any conclusion on tissue selectivity is dependent upon the choice of experimental model. However, the drugs do differ in some important aspects concerning the degree of metabolism and the number of active and inactive metabolites. The rather extensive metabolism by different cytochrome P450 isoforms also makes it difficult to characterise these drugs regarding tissue selectivity unless all metabolites are well characterised. The effective elimination half-lives of the hydroxy acid forms of the 4 statins are 0.7 to 3.0 hours. Protein binding is similar (> 90%) for fluvastatin, lovastatin and simvastatin, but it is only 50% for pravastatin. The best characterised statins from a clinical pharmacokinetic standpoint are fluvastatin and pravastatin. The major difference between these 2 compounds is the higher liver extraction of fluvastatin during the absorption phase compared with pravastatin (67 versus 45%, respectively, in the same dose range). Estimates of liver extraction in humans for lovastatin and simvastatin are poorly reported, which makes a direct comparison difficult.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel.

              Microspheres of a new kind of copolymer, poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA), are proposed in the present work for clinical administration of an antineoplastic drug paclitaxel with hypothesis that incorporation of a hydrophilic PEG segment within the hydrophobic PLA might facilitate the paclitaxel release. Paclitaxel-loaded PLA-PEG-PLA microspheres of various compositions were prepared by the solvent extraction/evaporation method. Characterization of the microspheres was then followed to examine the particle size and size distribution, the drug encapsulation efficiency, the colloidal stability, the surface chemistry, the surface and internal morphology, the drug physical state and its in vitro release behavior. The effects of polymer types, solvents and drug loading were investigated. It was found that in the microspheres the PEG segment was homogeneously distributed and caused porosity. Significantly faster release from PLA-PEG-PLA microspheres resulted in comparison with the PLGA counterpart. Incorporation of water-soluble solvent acetone in the organic solvent phase further increased the porosity of the PLA-PEG-PLA microspheres and facilitated the drug release. A total of 49.6% sustained release of paclitaxel within 1 month was achieved. Potentially, the presence of PEG on the surface of PLA-PEG-PLA microspheres could improve their biocompatibility. PLA-PEG-PLA microspheres could thus be promising for the clinical administration of highly hydrophobic antineoplastic drugs such as paclitaxel.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                10 February 2015
                : 9
                : 791-798
                Affiliations
                [1 ]Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
                [2 ]Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People’s Republic of China
                Author notes
                Correspondence: Qigang Guan, Department of Cardiology, The First Affiliated Hospital of China Medical University, 155# Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People’s Republic of China, Tel +86 24 8328 2690, Fax +86 24 8328 2690, Email qigangg@ 123456126.com
                Article
                dddt-9-791
                10.2147/DDDT.S76676
                4330030
                © 2015 Guan et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article