30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Luminous buried AGNs as a function of galaxy infrared luminosity revealed through Spitzer low-resolution infrared spectroscopy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the results of Spitzer IRS infrared 5-35 micron low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z > 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried AGNs in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z < 0.15 and non-Seyfert galaxies with infrared luminosities L(IR) < 10^12Lsun. We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L(IR) > 10{12}Lsun. For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by detected buried AGN and modestly-obscured (Av < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue, less-massive galaxies in the local universe. Our results may support the widely-proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star-formation-originating infrared luminosities, and have finished their major star-formation more quickly, due to stronger AGN feedback.

          Related collections

          Author and article information

          Journal
          05 January 2009
          Article
          10.1088/0004-637X/694/2/751
          0901.0558
          3e8edf0d-793c-46f6-ad37-20b267736e5b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Astrophys.J.694:751-764,2009
          21 pages (emulateapj.cls), 5 figures, accepted for publication in ApJ (April 2009 -1 v694 issue)
          astro-ph.GA

          Comments

          Comment on this article