8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined Influences of Model Choice, Data Quality, and Data Quantity When Estimating Population Trends

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have known impacts in population risk assessments, but their combined impact has not been thoroughly investigated. We tested the ability of scalar and matrix PVA models to predict percent decline over a ten-year interval, selected to coincide with the IUCN Red List criterion A.3, using data simulated for a hypothetical, short-lived organism with a simple life-history and for a threatened snail, Tasmaphena lamproides. PVA performance was assessed across different time series lengths, population growth rates, and levels of process and measurement error. We found that the magnitude of effects of measurement error, process error, and time series length, and interactions between these, depended on context. We found that high process and measurement error reduced the reliability of both models in predicted percent decline. Both sources of error contributed strongly to biased predictions, with process error tending to contribute to the spread of predictions more than measurement error. Increasing time series length improved precision and reduced bias of predicted population trends, but gains substantially diminished for time series lengths greater than 10–15 years. The simple parameterization scheme we employed contributed strongly to bias in matrix model predictions when both process and measurement error were high, causing scalar models to exhibit similar or greater precision and lower bias than matrix models. Our study provides evidence that, for short-lived species with structured but simple life histories, short time series and simple models can be sufficient for reasonably reliable conservation decision-making, and may be preferable for population projections when unbiased estimates of vital rates cannot be obtained.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The use and abuse of population viability analysis.

          A recent study by Brook et al. empirically tested the performance of population viability analysis (PVA) using data from 21 populations across a wide range of species. The study concluded that PVAs are good at predicting the future dynamics of populations. We suggest that this conclusion is a result of a bias in the studies that Brook et al. included in their analyses. We present arguments that PVAs can only be accurate at predicting extinction probabilities if data are extensive and reliable, and if the distribution of vital rates between individuals and years can be assumed stationary in the future, or if any changes can be accurately predicted. In particular, we note that although catastrophes are likely to have precipitated many extinctions, estimates of the probability of catastrophes are unreliable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The relative importance of life-history variables to population growth rate in mammals: Cole's prediction revisited.

            The relative importance of life-history variables to population growth rate (lambda) has substantial consequences for the study of life-history evolution and for the dynamics of biological populations. Using life-history data for 142 natural populations of mammals, we estimated the elasticity of lambda to changes in age at maturity (alpha), age at last reproduction (omega), juvenile survival (Pj), adult survival (Pa), and fertility (F). Elasticities were then used to quantify the relative importance of alpha, omega, Pj, Pa, and F to lambda and to test theoretical predictions regarding the relative influence on lambda of changes in life-history variables. Neither alpha nor any other single life-history variable had the largest relative influence on lambda in the majority of the populations, and this pattern did not change substantially when effects of phylogeny and body size were statistically removed. Empirical support for theoretical predictions was poor at best. However, analyses of elasticities on the basis of the magnitude (F) and onset (alpha) of reproduction revealed that alpha, followed by F, had the largest relative influence on lambda in populations characterized by early maturity and high reproductive rates, or when F/alpha > 0.60. When maturity was delayed and reproductive rates were low, or when F/alpha < 0.15, survival rates were overwhelmingly most influential, and reproductive parameters (alpha and F) had little relative influence on lambda. Population dynamic consequences of likely responses of biological populations to perturbations in life-history variables are examined, and predictions are made regarding the numerical dynamics of age-structured populations on the basis of values of the F/alpha ratio.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variability in population abundance and the classification of extinction risk.

              Classifying species according to their risk of extinction is a common practice and underpins much conservation activity. The reliability of such classifications rests on the accuracy of threat categorizations, but very little is known about the magnitude and types of errors that might be expected. The process of risk classification involves combining information from many sources, and understanding the quality of each source is critical to evaluating the overall status of the species. One common criterion used to classify extinction risk is a decline in abundance. Because abundance is a direct measure of conservation status, counts of individuals are generally the preferred method of evaluating whether populations are declining. Using the thresholds from criterion A of the International Union for Conservation of Nature (IUCN) Red List (critically endangered, decline in abundance of >80% over 10 years or 3 generations; endangered, decline in abundance of 50-80%; vulnerable, decline in abundance of 30-50%; least concern or near threatened, decline in abundance of 0-30%), we assessed 3 methods used to detect declines solely from estimates of abundance: use of just 2 estimates of abundance; use of linear regression on a time series of abundance; and use of state-space models on a time series of abundance. We generated simulation data from empirical estimates of the typical variability in abundance and assessed the 3 methods for classification errors. The estimates of the proportion of falsely detected declines for linear regression and the state-space models were low (maximum 3-14%), but 33-75% of small declines (30-50% over 15 years) were not detected. Ignoring uncertainty in estimates of abundance (with just 2 estimates of abundance) allowed more power to detect small declines (95%), but there was a high percentage (50%) of false detections. For all 3 methods, the proportion of declines estimated to be >80% was higher than the true proportion. Use of abundance data to detect species at risk of extinction may either fail to detect initial declines in abundance or have a high error rate. © 2011 Society for Conservation Biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 July 2015
                2015
                : 10
                : 7
                : e0132255
                Affiliations
                [1 ]Department of Biology, University of California Riverside, Riverside, CA, United States of America
                [2 ]Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
                [3 ]The School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
                [4 ]School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287, United States of America
                Tulane University Health Sciences Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PR KEA HMR TJR JF. Performed the experiments: PR KEA. Analyzed the data: PR KEA HMR. Wrote the paper: PR KEA HMR TJR JF.

                Article
                PONE-D-14-26518
                10.1371/journal.pone.0132255
                4503393
                26177511
                3e92ca20-fd38-4dfb-8c55-5fde5a7ef35b
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 June 2014
                : 11 June 2015
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                This research was supported by the National Science Foundation ( www.nsf.gov; DEB-0824708, and EF-1065753) and the California Landscape Conservation Cooperative (californialcc.org; 5288768) through grants to HMR, JF and KEA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                Data from our study, including model code and simulation output, has been directly uploaded with the manuscript.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article