9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of the arginine metabolome in pain: implications for sickle cell disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sickle cell disease (SCD) is the most common hemoglobinopathy in the US, affecting approximately 100,000 individuals in the US and millions worldwide. Pain is the hallmark of SCD, and a subset of patients experience pain virtually all of the time. Of interest, the arginine metabolome is associated with several pain mechanisms highlighted in this review. Since SCD is an arginine deficiency syndrome, the contribution of the arginine metabolome to acute and chronic pain in SCD is a topic in need of further attention. Normal arginine metabolism is impaired in SCD through various mechanisms that contribute to endothelial dysfunction, vaso-occlusion, pulmonary complications, risk of leg ulcers, and early mortality. Arginine is a semiessential amino acid that serves as a substrate for protein synthesis and is the precursor to nitric oxide (NO), polyamines, proline, glutamate, creatine, and agmatine. Since arginine is involved in multiple metabolic processes, a deficiency of this amino acid has the potential to disrupt many cellular and organ functions. NO is a potent vasodilator that is depleted in SCD and may contribute to vaso-occlusive pain. As the obligate substrate for NO production, arginine also plays a mechanistic role in SCD-related pain, although its contribution to pain pathways likely extends beyond NO. Low global arginine bioavailability is associated with pain severity in both adults and children with SCD as well as other non-SCD pain syndromes. Preliminary clinical studies of arginine therapy in SCD demonstrate efficacy in treating acute vaso-occlusive pain, as well as leg ulcers and pulmonary hypertension. Restoration of arginine bioavailability through exogenous supplementation of arginine is, therefore, a promising therapeutic target. Phase II clinical trials of arginine therapy for sickle-related pain are underway and a Phase III randomized controlled trial is anticipated in the near future.

          Related collections

          Most cited references 89

          • Record: found
          • Abstract: found
          • Article: not found

          The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease.

          The efficient sequestration of hemoglobin by the red blood cell membrane and the presence of multiple hemoglobin clearance mechanisms suggest a critical need to prevent the buildup of this molecule in the plasma. A growing list of clinical manifestations attributed to hemoglobin release in a variety of acquired and iatrogenic hemolytic disorders suggests that hemolysis and hemoglobinemia should be considered as a novel mechanism of human disease. Pertinent scientific literature databases and references were searched through October 2004 using terms that encompassed various aspects of hemolysis, hemoglobin preparations, clinical symptoms associated with plasma hemoglobin, nitric oxide in hemolysis, anemia, pulmonary hypertension, paroxysmal nocturnal hemoglobinuria, and sickle-cell disease. Hemoglobin is released into the plasma from the erythrocyte during intravascular hemolysis in hereditary, acquired, and iatrogenic hemolytic conditions. When the capacity of protective hemoglobin-scavenging mechanisms has been saturated, levels of cell-free hemoglobin increase in the plasma, resulting in the consumption of nitric oxide and clinical sequelae. Nitric oxide plays a major role in vascular homeostasis and has been shown to be a critical regulator of basal and stress-mediated smooth muscle relaxation and vasomotor tone, endothelial adhesion molecule expression, and platelet activation and aggregation. Thus, clinical consequences of excessive cell-free plasma hemoglobin levels during intravascular hemolysis or the administration of hemoglobin preparations include dystonias involving the gastrointestinal, cardiovascular, pulmonary, and urogenital systems, as well as clotting disorders. Many of the clinical sequelae of intravascular hemolysis in a prototypic hemolytic disease, paroxysmal nocturnal hemoglobinuria, are readily explained by hemoglobin-mediated nitric oxide scavenging. A growing body of evidence supports the existence of a novel mechanism of human disease, namely, hemolysis-associated smooth muscle dystonia, vasculopathy, and endothelial dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sickle-cell disease.

            With the global scope of sickle-cell disease, knowledge of the countless clinical presentations and treatment of this disorder need to be familiar to generalists, haematologists, internists, and paediatricians alike. Additionally, an underlying grasp of sickle-cell pathophysiology, which has rapidly accrued new knowledge in areas related to erythrocyte and extra-erythrocyte events, is crucial to an understanding of the complexity of this molecular disease with protean manifestations. We highlight studies from past decades related to such translational research as the use of hydroxyurea in treatment, as well as the therapeutic promise of red-cell ion-channel blockers, and antiadhesion and anti-inflammatory therapy. The novel role of nitric oxide in sickle-cell pathophysiology and the range of its potential use in treatment are also reviewed. Understanding of disease as the result of a continuing interaction between basic scientists and clinical researchers is best exemplified by this entity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease.

              Sickle cell disease is characterized by a state of nitric oxide resistance and limited bioavailability of l-arginine, the substrate for nitric oxide synthesis. We hypothesized that increased arginase activity and dysregulated arginine metabolism contribute to endothelial dysfunction, pulmonary hypertension, and patient outcomes. To explore the role of arginase in sickle cell disease pathogenesis, pulmonary hypertension, and mortality. Plasma amino acid levels, plasma and erythrocyte arginase activities, and pulmonary hypertension status as measured by Doppler echocardiogram were prospectively obtained in outpatients with sickle cell disease. Patients were followed up for survival up to 49 months. Urban tertiary care center and community clinics in the United States between February 2001 and March 2005. Two hundred twenty-eight patients with sickle cell disease, aged 18 to 74 years, and 36 control participants. Plasma amino acid levels, plasma and erythrocyte arginase activities, diagnosis of pulmonary hypertension, and mortality. Plasma arginase activity was significantly elevated in patients with sickle cell disease, with highest activity found in patients with secondary pulmonary hypertension. Arginase activity correlated with the arginine-ornithine ratio, and lower ratios were associated with greater severity of pulmonary hypertension and with mortality in this population (risk ratio, 2.5; 95% confidence interval [CI], 1.2-5.2; P = .006). Global arginine bioavailability, characterized by the ratio of arginine to ornithine plus citrulline, was also strongly associated with mortality (risk ratio, 3.6; 95% CI, 1.5-8.3; P<.001). Increased plasma arginase activity was correlated with increased intravascular hemolytic rate and, to a lesser extent, with markers of inflammation and soluble adhesion molecule levels. These data support a novel mechanism of disease in which hemolysis contributes to reduced nitric oxide bioavailability and endothelial dysfunction via release of erythrocyte arginase, which limits arginine bioavailability, and release of erythrocyte hemoglobin, which scavenges nitric oxide. The ratios of arginine to ornithine and arginine to ornithine plus citrulline are independently associated with pulmonary hypertension and increased mortality in patients with sickle cell disease.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2016
                30 March 2016
                : 9
                : 167-175
                Affiliations
                [1 ]Division of Pediatric Hematology-Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
                [2 ]Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
                [3 ]Division of Pediatric Emergency Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
                [4 ]Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
                [5 ]Emory-Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA
                [6 ]Pediatric Emergency Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
                Author notes
                Correspondence: Claudia R Morris, Division of Pediatric Emergency Medicine, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, W458, Atlanta, GA 30322, USA, Tel +1 404 727 5500, Email claudia.r.morris@ 123456emory.edu ; claudiamorris@ 123456comcast.net
                Article
                jpr-9-167
                10.2147/JPR.S55571
                4821376
                27099528
                © 2016 Bakshi and Morris. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article