55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities.

          Abstract

          The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.

          Abstract

          Graphical Abstract Figure.

          The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.

          Related collections

          Most cited references284

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

          The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vivax malaria: neglected and not benign.

            Plasmodium vivax threatens almost 40% of the world's population, resulting in 132-391 million clinical infections each year. Most of these cases originate from Southeast Asia and the Western Pacific, although a significant number also occurs in Africa and South America. Although often regarded as causing a benign and self-limiting infection, there is increasing evidence that the overall burden, economic impact, and severity of disease from P. vivax have been underestimated. Malaria control strategies have had limited success and are confounded by the lack of access to reliable diagnosis, emergence of multidrug resistant isolates, the parasite's ability to transmit early in the course of disease and relapse from dormant liver stages at varying time intervals after the initial infection. Progress in reducing the burden of disease will require improved access to reliable diagnosis and effective treatment of both blood-stage and latent parasites, and more detailed characterization of the epidemiology, morbidity, and economic impact of vivax malaria. Without these, vivax malaria will continue to be neglected by ministries of health, policy makers, researchers, and funding bodies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally.

              Malaria in humans is caused by apicomplexan parasites belonging to 5 species of the genus Plasmodium. Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease is not known. Dimorphism in defined genes has led to P. ovale parasites being divided into classic and variant types. We hypothesized that these dimorphs represent distinct parasite species. Multilocus sequence analysis of 6 genetic characters was carried out among 55 isolates from 12 African and 3 Asia-Pacific countries. Each genetic character displayed complete dimorphism and segregated perfectly between the 2 types. Both types were identified in samples from Ghana, Nigeria, São Tomé, Sierra Leone, and Uganda and have been described previously in Myanmar. Splitting of the 2 lineages is estimated to have occurred between 1.0 and 3.5 million years ago in hominid hosts. We propose that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia. We speculate on possible scenarios that could have led to this speciation. Furthermore, the relatively high frequency of imported cases of symptomatic P. ovale infection in the United Kingdom suggests that the morbidity caused by ovale malaria has been underestimated.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Rev
                FEMS Microbiol. Rev
                femsre
                femsre
                FEMS Microbiology Reviews
                Oxford University Press
                0168-6445
                1574-6976
                01 February 2016
                May 2016
                01 February 2016
                : 40
                : 3
                : 343-372
                Affiliations
                [1 ]Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
                [2 ]Department of Microbiology, Monash University, Clayton, Victoria, Australia
                [3 ]Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
                [4 ]Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia
                [5 ]School of Population Health, University of Melbourne, Parkville, Victoria, Australia
                Author notes
                [* ] Corresponding author: Centre for Biomedical Research, Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne 3004, Victoria, Australia. Tel: +61-3-9282-2111; Fax: +61-3-9282-2265; E-mail: beeson@ 123456burnet.edu.au
                Article
                10.1093/femsre/fuw001
                4852283
                26833236
                3e992c92-a357-4d04-8f44-1a456c674744
                © FEMS 2016.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 03 January 2016
                : 03 July 2015
                Page count
                Pages: 30
                Categories
                Review Article
                Custom metadata
                May 2016

                Microbiology & Virology
                plasmodium falciparum,plasmodium vivax,merozoites,invasion,immunity,vaccines,antibodies

                Comments

                Comment on this article