34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A comprehensive analysis of 40 blind protein structure predictions

      research-article
      1 , , 2 ,
      BMC Structural Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We thoroughly analyse the results of 40 blind predictions for which an experimental answer was made available at the fourth meeting on the critical assessment of protein structure methods (CASP4). Using our comparative modelling and fold recognition methodologies, we made 29 predictions for targets that had sequence identities ranging from 50% to 10% to the nearest related protein with known structure. Using our ab initio methodologies, we made eleven predictions for targets that had no detectable sequence relationships.

          Results

          For 23 of these proteins, we produced models ranging from 1.0 to 6.0 Å root mean square deviation (RMSD) for the C α atoms between the model and the corresponding experimental structure for all or large parts of the protein, with model accuracies scaling fairly linearly with respect to sequence identity (i.e., the higher the sequence identity, the better the prediction). We produced nine models with accuracies ranging from 4.0 to 6.0 Å C α RMSD for 60–100 residue proteins (or large fragments of a protein), with a prediction accuracy of 4.0 Å C α RMSD for residues 1–80 for T110/rbfa.

          Conclusions

          The areas of protein structure prediction that work well, and areas that need improvement, are discernable by examining how our methods have performed over the past four CASP experiments. These results have implications for modelling the structure of all tractable proteins encoded by the genome of an organism.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.

          We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein structure alignment by incremental combinatorial extension (CE) of the optimal path.

            A new algorithm is reported which builds an alignment between two protein structures. The algorithm involves a combinatorial extension (CE) of an alignment path defined by aligned fragment pairs (AFPs) rather than the more conventional techniques using dynamic programming and Monte Carlo optimization. AFPs, as the name suggests, are pairs of fragments, one from each protein, which confer structure similarity. AFPs are based on local geometry, rather than global features such as orientation of secondary structures and overall topology. Combinations of AFPs that represent possible continuous alignment paths are selectively extended or discarded thereby leading to a single optimal alignment. The algorithm is fast and accurate in finding an optimal structure alignment and hence suitable for database scanning and detailed analysis of large protein families. The method has been tested and compared with results from Dali and VAST using a representative sample of similar structures. Several new structural similarities not detected by these other methods are reported. Specific one-on-one alignments and searches against all structures as found in the Protein Data Bank (PDB) can be performed via the Web at http://cl.sdsc.edu/ce.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein structure prediction and structural genomics.

              Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.
                Bookmark

                Author and article information

                Journal
                BMC Struct Biol
                BMC Structural Biology
                BioMed Central (London )
                1472-6807
                2002
                1 August 2002
                : 2
                : 3
                Affiliations
                [1 ]Department of Microbiology, University of Washington, School of Medicine, Seattle, WA 98195, USA
                [2 ]Department of Structural Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
                Article
                1472-6807-2-3
                10.1186/1472-6807-2-3
                122083
                12150712
                3e9de96d-1f88-4df0-877b-8a93189e5869
                Copyright © 2002 Samudrala and Levitt; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 9 April 2002
                : 1 August 2002
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article