2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vasorin/ATIA Promotes Cigarette Smoke–Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND: Escaping cell death pathways is an important event during carcinogenesis. We previously identified anti-TNFα-induced apoptosis (ATIA, also known as vasorin) as an antiapoptotic factor that suppresses reactive oxygen species (ROS) production. However, the role of vasorin in lung carcinogenesis has not been investigated. METHODS: Vasorin expression was examined in human lung cancer tissues with immunohistochemistry and database analysis. Genetic and pharmacological approaches were used to manipulate protein expression and autophagy activity in human bronchial epithelial cells (HBECs). ROS generation was measured with fluorescent indicator, apoptosis with release of lactate dehydrogenase, and cell transformation was assessed with colony formation in soft agar. RESULTS: Vasorin expression was increased in human lung cancer tissues and cell lines, which was inversely associated with lung cancer patient survival. Cigarette smoke extract (CSE) and benzo[a]pyrene diol epoxide (BPDE)–induced vasorin expression in HBECs. Vasorin knockdown in HBECs significantly suppressed CSE-induced transformation in association with enhanced ROS accumulation and autophagy. Scavenging ROS attenuated autophagy and cytotoxicity in vasorin knockdown cells, suggesting that vasorin potentiates transformation by impeding ROS-mediated CSE cytotoxicity and improving survival of the premalignant cells. Suppression of autophagy effectively inhibited CSE-induced apoptosis, suggesting that autophagy was pro-apoptotic in CSE-treated cells. Importantly, blocking autophagy strongly potentiated CSE-induced transformation. CONCLUSION: These results suggest that vasorin is a potential lung cancer–promoting factor that facilitates cigarette smoke–induced bronchial epithelial cell transformation by suppressing autophagy-mediated apoptosis, which could be exploited for lung cancer prevention.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation.

          Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mitochondrial reactive oxygen species and cancer

            Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift has shown that mROS can act as signaling molecules to activate pro-growth responses. Cancer cells have long been observed to have increased production of ROS relative to normal cells, although the implications of this increase were not always clear. This is especially interesting considering cancer cells often also induce expression of antioxidant proteins. Here, we discuss how cancer-associated mutations and microenvironments can increase production of mROS, which can lead to activation of tumorigenic signaling and metabolic reprogramming. This tumorigenic signaling also increases expression of antioxidant proteins to balance the high production of ROS to maintain redox homeostasis. We also discuss how cancer-specific modifications to ROS and antioxidants may be targeted for therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins.

              By expressing two genes (hTERT and Cdk4), we have developed a method to reproducibly generate continuously replicating human bronchial epithelial cell (HBEC) lines that provide a novel resource to study the molecular pathogenesis of lung cancer and the differentiation of bronchial epithelial cells. Twelve human bronchial epithelial biopsy specimens obtained from persons with and without lung cancer were placed into short-term culture and serially transfected with retroviral constructs containing cyclin-dependent kinase (Cdk) 4 and human telomerase reverse transcriptase (hTERT), resulting in continuously growing cultures. The order of introduction of Cdk4 and hTERT did not appear to be important; however, transfection of either gene alone did not result in immortalization. Although they could be cloned, the immortalized bronchial cells did not form colonies in soft agar or tumors in nude mice. The immortalized HBECs have epithelial morphology; express epithelial markers cytokeratins 7, 14, 17, and 19, the stem cell marker p63, and high levels of p16(INK4a); and have an intact p53 checkpoint pathway. Cytogenetic analysis and array comparative genomic hybridization profiling show immortalized HBECs to have duplication of parts of chromosomes 5 and 20. Microarray gene expression profiling demonstrates that the Cdk4/hTERT-immortalized bronchial cell lines clustered together and with nonimmortalized bronchial cells, distinct from lung cancer cell lines. We also immortalized several parental cultures with viral oncoproteins human papilloma virus type 16 E6/E7 with and without hTERT, and these cells exhibited loss of the p53 checkpoint and significantly different gene expression profiles compared with Cdk4/hTERT-immortalized HBECs. These HBEC lines are a valuable new tool for studying of the pathogenesis of lung cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Transl Oncol
                Transl Oncol
                Translational Oncology
                Neoplasia Press
                1936-5233
                21 November 2019
                January 2020
                21 November 2019
                : 13
                : 1
                : 32-41
                Affiliations
                []Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, 87108, USA
                []Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
                Author notes
                []Address all correspondence to: Yong Lin, MD, PhD, Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM, 87108, USA. ylin@ 123456lrri.org
                [1]

                Equal contribution.

                Article
                S1936-5233(19)30353-5
                10.1016/j.tranon.2019.09.001
                6883318
                31760267
                3e9f1c0e-cae3-4861-b6c8-cb5a5c4f0afd
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 June 2019
                : 29 August 2019
                : 3 September 2019
                Categories
                Original article

                Comments

                Comment on this article