26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interferences between breathing, experimental dyspnoea and bodily self-consciousness

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dyspnoea, a subjective experience of breathing discomfort, is a most distressing symptom. It implicates complex cortical networks that partially overlap with those underlying bodily self-consciousness, the experience that the body is one’s own within a given location (self-identification and self-location, respectively). Breathing as an interoceptive signal contributes to bodily self-consciousness: we predicted that inducing experimental dyspnoea would modify or disrupt this contribution. We also predicted that manipulating bodily self-consciousness with respiratory-visual stimulation would possibly attenuate dyspnoea. Twenty-five healthy volunteers were exposed to synchronous and asynchronous respiratory-visual illumination of an avatar during normal breathing and mechanically loaded breathing that elicited dyspnoea. During normal breathing, synchronous respiratory-visual stimulation induced illusory self-identification with the avatar and an illusory location of the subjects’ breathing towards the avatar. This did not occur when respiratory-visual stimulation was performed during dyspnoea-inducing loaded breathing. In this condition, the affective impact of dyspnoea was attenuated by respiratory-visual stimulation, particularly when asynchronous. This study replicates and reinforces previous studies about the integration of interoceptive and exteroceptive signals in the construction of bodily self-consciousness. It confirms the existence of interferences between experimental dyspnoea and cognitive functions. It suggests that respiratory-visual stimulation should be tested as a non-pharmacological approach of dyspnoea treatment.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective.

          Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two distinct neuronal networks mediate the awareness of environment and of self.

            Evidence from functional neuroimaging studies on resting state suggests that there are two distinct anticorrelated cortical systems that mediate conscious awareness: an "extrinsic" system that encompasses lateral fronto-parietal areas and has been linked with processes of external input (external awareness), and an "intrinsic" system which encompasses mainly medial brain areas and has been associated with internal processes (internal awareness). The aim of our study was to explore the neural correlates of resting state by providing behavioral and neuroimaging data from healthy volunteers. With no a priori assumptions, we first determined behaviorally the relationship between external and internal awareness in 31 subjects. We found a significant anticorrelation between external and internal awareness with a mean switching frequency of 0.05 Hz (range: 0.01-0.1 Hz). Interestingly, this frequency is similar to BOLD fMRI slow oscillations. We then evaluated 22 healthy volunteers in an fMRI paradigm looking for brain areas where BOLD activity correlated with "internal" and "external" scores. Activation of precuneus/posterior cingulate, anterior cingulate/mesiofrontal cortices, and parahippocampal areas ("intrinsic system") was linearly linked to intensity of internal awareness, whereas activation of lateral fronto-parietal cortices ("extrinsic system") was linearly associated with intensity of external awareness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From part- to whole-body ownership in the multisensory brain.

              The question of how we experience ownership of an entire body distinct from the external world is a fundamental problem in psychology and neuroscience [1-6]. Earlier studies suggest that integration of visual, tactile, and proprioceptive information in multisensory areas [7-11] mediates self-attribution of single limbs. However, it is still unknown how ownership of individual body parts translates into the unitary experience of owning a whole body. Here, we used a "body-swap" illusion [12], in which people experienced an artificial body to be their own, in combination with functional magnetic resonance imaging to reveal a coupling between the experience of full-body ownership and neural responses in bilateral ventral premotor and left intraparietal cortices, and left putamen. Importantly, activity in the ventral premotor cortex reflected the construction of ownership of a whole body from the parts, because it was stronger when the stimulated body part was attached to a body, was present irrespective of whether the illusion was triggered by stimulation of the hand or the abdomen, and displayed multivoxel patterns carrying information about full-body ownership. These findings suggest that the unitary experience of owning an entire body is produced by neuronal populations that integrate multisensory information across body segments. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                thomas.similowski@aphp.fr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 August 2017
                30 August 2017
                2017
                : 7
                : 9990
                Affiliations
                [1 ]Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France
                [2 ]ISNI 0000000121839049, GRID grid.5333.6, Laboratory of Cognitive Neuroscience, , Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, ; Geneva, Switzerland
                [3 ]ISNI 0000 0001 0721 9812, GRID grid.150338.c, Division of Pulmonary Diseases, , Geneva University Hospital, ; Geneva, Switzerland
                [4 ]ISNI 0000 0001 2175 4109, GRID grid.50550.35, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département “R3S”), ; F-75013 Paris, France
                [5 ]ISNI 0000 0001 0721 9812, GRID grid.150338.c, Department of Neurology, , Geneva University Hospital, ; Geneva, Switzerland
                Author information
                http://orcid.org/0000-0003-2868-9279
                Article
                11045
                10.1038/s41598-017-11045-y
                5577140
                28855723
                3e9f7a13-4271-45f0-8c79-44dd54ad5192
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 March 2017
                : 18 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article