2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multienzyme Biosynthesis of Dihydroartemisinic Acid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One-pot multienzyme biosynthesis is an attractive method for producing complex, chiral bioactive compounds. It is advantageous over step-by-step synthesis, as it simplifies the process, reduces costs and often leads to higher yield due to the synergistic effects of enzymatic reactions. In this study, dihydroartemisinic acid (DHAA) pathway enzymes were overexpressed in Saccharomyces cerevisiae, and whole-cell biotransformation of amorpha-4,11-diene (AD) to DHAA was demonstrated. The first oxidation step by cytochrome P450 (CYP71AV1) is the main rate-limiting step, and a series of N-terminal truncation and transcriptional tuning improved the enzymatic activity. With the co-expression of artemisinic aldehyde dehydrogenase (ALDH1), which recycles NADPH, a significant 8-fold enhancement of DHAA production was observed. Subsequently, abiotic conditions were optimized to further enhance the productivity of the whole-cell biocatalysts. Collectively, approximately 230 mg/L DHAA was produced by the multi-step whole-cell reaction, a ~50% conversion from AD. This study illustrates the feasibility of producing bioactive compounds by in vitro one-pot multienzyme reactions.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NADPH-generating systems in bacteria and archaea

          Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms.

            Terpenoids represent a diverse class of molecules that provide a wealth of opportunities to address many human health and societal issues. The expansive array of structures and functionalities that have been evolved in nature provide an excellent pool of molecules for use in human therapeutics. While this class of molecules has members with therapeutic properties including anticancer, antiparasitic, antimicrobial, antiallergenic, antispasmodic, antihyperglycemic, anti-inflammatory, and immunomodulatory properties, supply limitations prevent the large scale use of some molecules. Many of these molecules are only found in ppm levels in nature thus requiring massive harvesting to obtain sufficient amounts of the drug. Synthetic biology and metabolic engineering provide innovative approaches to increase the production of the desired molecule in the native organism, and most importantly, transfer the biosynthetic pathways to other hosts. Microbial systems are well studied, and genetic manipulations allow the optimization of microbial metabolisms for the production of common terpenoid precursors. Using a host of tools, unprecedented advancements in the large scale production of terpenoids have been achieved in recent years. Identification of limiting steps and pathway regulation, coupled with design strategies to minimize terpenoid byproducts wih a high flux to the desired biosynthetic pathways, have yielded greater than 100-fold improvements in the production of a range of terpenoids. This review focuses on the biodiversity of terpenoids, the biosynthetic pathways involved, and engineering efforts to maximize the production through these pathways.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method.

              Here we describe a protocol for the production of frozen competent yeast cells that can be transformed with high efficiency using the lithium acetate/single-stranded carrier DNA/PEG method. This protocol allows the production of highly competent yeast cells that can be frozen and used at a later date and is especially useful for laboratories using one or two strains repeatedly. The production of yeast cells for freezing takes only approximately 30 min, once the yeast culture has grown up. Transformation with frozen competent yeast cells will take approximately 30 min, depending on the heat shock used.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                28 August 2017
                September 2017
                : 22
                : 9
                : 1422
                Affiliations
                [1 ]Biotransformation Innovation Platform, Agency for Science Technology and Research, Singapore 138673, Singapore; congqiang_zhang@ 123456biotrans.a-star.edu.sg
                [2 ]Department of Biochemistry, National University of Singapore, Singapore 117598, Singapore
                Author notes
                Article
                molecules-22-01422
                10.3390/molecules22091422
                6151439
                28846664
                3eac343c-dea4-4b52-a078-9a8267a6d52d
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 August 2017
                : 27 August 2017
                Categories
                Article

                whole cell biocatalysis,cyp71av1,dihydroartemisinic acid

                Comments

                Comment on this article