9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic and Assembly of Epiphyte and Endophyte Lactic Acid Bacteria During the Life Cycle of Origanum vulgare L.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Origanum vulgare L. (oregano) was chosen as suitable model to investigate the ability of the endophyte-microbiome, especially that of lactic acid bacteria, to develop specific interactions with the plant, mediated by the essential oils (EOs). Combined culture-dependent and -independent approaches analyzed the bacterial dynamic and assembly of Origanum vulgare L. throughout the life cycle. Epiphyte bacteria were more abundant than the endophyte ones. The number of presumptive lactic acid bacteria increased throughout oregano life cycle, according to the plant organ. Diverse species of lactic acid bacteria populated the plant, but Lactobacillus plantarum stably dominated both epiphyte and endophyte populations. High-throughput DNA sequencing showed highest epiphyte bacterial diversity at early vegetative and full-flowering stages, with blooming signing the main microbial differentiation among plant organs. Proteobacteria, Actinobacteria and Bacteroidetes, and Firmicutes and Cyanobacteria at lower abundance were the main phyla. Various genera were detectable, but oregano harbored mainly Methylobacterium, Sphingomonas, Rhizobium and Aurantimonas throughout phenological stages. Firmicutes epiphyte and endophyte microbiotas were different, with a core microbiota consisting of Bacillus, Exiguobacterium, Streptococcus, Staphylococcus and Lactobacillus genera. Bacillus dominated throughout phenological stages. High-throughput DNA sequencing confirmed the dominance of L. plantarum within the epiphyte and endophyte populations of lactic acid bacteria. Yields of EOs varied among plant organs and throughout plant life cycle. L. plantarum strains were the most resistant to the total EOs (mainly thymol and carvacrol) as extracted from the plant. The positive correlation among endophyte lactic acid bacteria and the EOs content seems confirm the hypothesis that the colonization within plant niches may be regulated by mechanisms linked to the synthesis of the secondary metabolites.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Responses of soil bacterial and fungal communities to extreme desiccation and rewetting.

          The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution

            We developed a fast method for denoising pyrosequencing for community 16S rRNA analysis. We observe a 2–4 fold reduction in the number of observed OTUs (operational taxonomic units) comparing denoised with non-denoised data. ~50,000 sequences can be denoised on a laptop within an hour, two orders of magnitude faster than published techniques. We demonstrate the effects of denoising on alpha and beta diversity of large 16S rRNA datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploitation of vegetables and fruits through lactic acid fermentation.

              Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 June 2018
                2018
                : 9
                : 1372
                Affiliations
                [1] 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro , Bari, Italy
                [2] 2Faculty of Science and Technology, Libera Università di Bolzano , Bolzano, Italy
                [3] 3Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro , Bari, Italy
                Author notes

                Edited by: Giovanna Suzzi, Università di Teramo, Italy

                Reviewed by: Nicola Francesca, Università degli Studi di Palermo, Italy; Edoardo Puglisi, Università Cattolica del Sacro Cuore, Italy

                *Correspondence: Raffaella Di Cagno, raffaella.dicagno@ 123456unibz.it

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01372
                6029521
                29997592
                3ebb17a8-9d50-4ef0-b70c-35cff956f7e9
                Copyright © 2018 Pontonio, Di Cagno, Tarraf, Filannino, De Mastro and Gobbetti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2018
                : 06 June 2018
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 70, Pages: 16, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                epiphyte bacteria,endophyte bacteria,oregano,lactic acid bacteria,essential oils,thymol,carvacrol

                Comments

                Comment on this article