21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy.

          Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28-q29 (refs 13-19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man.

            Two distinct late-positive components of the scalp-recorded auditory evoked potential were identified which differed in their latency, scalp topography and psychological correlates. The earlier component, called "P3a" (latency about 240 msec), was elicited by infrequent, unpredictable shifts of either intensity or frequency in a train of tone pips whether the subject was ignoring (reading a book) or attending to the tones (counting). The later component, called "P3a" (mean latency about 350 msec), occurred only when the subject was actively attending to the tones; it was evoked by the infrequent, unpredictable stimulus shifts, regardless of whether the subject was counting that stimulus or the more frequently occurring stimulus. Both of these distinct psychophysiological entities have previously been refered to as the "P3" or "P300" in the literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.

              Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                10 April 2020
                April 2020
                : 9
                : 4
                : 1074
                Affiliations
                Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; flora.rosenzweig@ 123456student.uclouvain.be (F.R.); guillaume.gersdorff@ 123456student.uclouvain.be (G.G.); anais.gregoire@ 123456uclouvain.be (A.G.); philippe.rombaux@ 123456uclouvain.be (P.R.); naima.deggouj@ 123456uclouvain.be (N.D.)
                Author notes
                [* ]Correspondence: romolo.desiati@ 123456uclouvain.be ; Tel.: +32–2–764–3253
                Author information
                https://orcid.org/0000-0001-8663-4052
                https://orcid.org/0000-0002-0448-7579
                Article
                jcm-09-01074
                10.3390/jcm9041074
                7230308
                32290039
                3ec78f44-2c67-4290-a78f-422840bebe3c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 February 2020
                : 01 April 2020
                Categories
                Review

                ansd,auditory neuropathy spectrum disorder,auditory synaptopathy,hidden hearing loss,genetics,cochlear implant

                Comments

                Comment on this article