16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The changing form of Antarctic biodiversity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

            For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the rocks: the microbiology of Antarctic Dry Valley soils.

              The arid soils of the Antarctic Dry Valleys constitute some of the oldest, coldest, driest and most oligotrophic soils on Earth. Early studies suggested that the Dry Valley soils contained, at best, very low levels of viable microbiota. However, recent applications of molecular methods have revealed a dramatically contrasting picture - a very wide diversity of microbial taxa, many of which are uncultured and taxonomically unique, and a community that seems to be structured solely by abiotic processes. Here we review our understanding of these extreme Antarctic terrestrial microbial communities, with particular emphasis on the factors that are involved in their development, distribution and maintenance in these cold desert environments.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                June 2015
                June 24 2015
                June 2015
                : 522
                : 7557
                : 431-438
                Article
                10.1038/nature14505
                26108852
                3ecbbfef-e3f7-46c8-b801-72f8ca6d7ea9
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article