50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear.

          Methods

          SCAP was isolated and treated with 10 -7 M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods.

          Results

          MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers ( ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors.

          Conclusions

          The ondonto/osteogenic differentiation of SCAP is enhanced by 10 -7 M 17beta-estradiol via the activation of MAPK signaling pathway.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Estrogen receptors: how do they signal and what are their targets.

          During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance between two opposing forces in the form of two distinct receptors (ER alpha and ER beta) and their splice variants. The prospect that these two pathways can be selectively stimulated or inhibited with subtype-selective drugs constitutes new and promising therapeutic opportunities in clinical areas as diverse as hormone replacement, autoimmune diseases, prostate and breast cancer, and depression. Molecular biological, biochemical, and structural studies have generated information which is invaluable for the development of more selective and effective ER ligands. We have also become aware that ERs do not function by themselves but require a number of coregulatory proteins whose cell-specific expression explains some of the distinct cellular actions of estrogen. Estrogen is an important morphogen, and many of its proliferative effects on the epithelial compartment of glands are mediated by growth factors secreted from the stromal compartment. Thus understanding the cross-talk between growth factor and estrogen signaling is essential for understanding both normal and malignant growth. In this review we focus on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study.

            Mesenchymal stem cells (MSCs) have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells or DPSCs) and deciduous teeth (stem cells from human exfoliated deciduous teeth). We recently discovered another type of MSCs in the apical papilla of human immature permanent teeth termed stem cells from the apical papilla (SCAP). Here, we further characterized the apical papilla tissue and stem cell properties of SCAP using histologic, immunohistochemical, and immunocytofluorescent analyses. We found that the apical papilla is distinctive to the pulp in terms of containing less cellular and vascular components than those in the pulp. Cells in the apical papilla proliferated 2- to 3-fold greater than those in the pulp in organ cultures. Both SCAP and DPSCs were as potent in osteo/dentinogenic differentiation as MSCs from bone marrows, whereas they were weaker in adipogenic potential. The immunophenotype of SCAP is similar to that of DPSCs on the osteo/dentinogenic and growth factor receptor gene profiles. Double-staining experiments showed that STRO-1 coexpressed with dentinogenic markers such as bone sialophosphoprotein, osteocalcin, and growth factors FGFR1 and TGFbetaRI in cultured SCAP. Additionally, SCAP express a wide variety of neurogenic markers such as nestin and neurofilament M upon stimulation with a neurogenic medium. We conclude that SCAP are similar to DPSCs but a distinct source of potent dental stem/progenitor cells. Their implications in root development and apexogenesis are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning of a novel receptor expressed in rat prostate and ovary.

              We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol > testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
                Bookmark

                Author and article information

                Contributors
                syusukeyao@126.com
                bean1212@126.com
                wzl710@163.com
                nydkys@126.com
                childrencool@126.com
                yyms.hi@163.com
                752413313@qq.com
                yujinhua@njmu.edu.cn
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                17 November 2014
                17 November 2014
                2014
                : 5
                : 6
                : 125
                Affiliations
                [ ]Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014 China
                [ ]Key Laboratory of Oral Diseases of Jiangsu Province and, Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
                [ ]Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029 China
                Article
                437
                10.1186/scrt515
                4446088
                25403930
                3ecfa989-926d-49ab-be15-983ecee2846f
                © Li et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 February 2014
                : 28 October 2014
                : 29 October 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article