Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ovarian cancer: density equalizing mapping of the global research architecture

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite its impact on female health worldwide, no efforts have been made to depict the global architecture of ovarian cancer research and to understand the trends in the related literature. Hence, it was the objective of this study to assess the global scientific performance chronologically, geographically and in regards to economic benchmarks using bibliometric tools and density equalizing map projections.

          Methods

          The NewQIS platform was employed to identify all ovarian cancer related articles published in the Web of Science since 1900. The items were analyzed regarding quantitative aspects (e.g. publication date, country of origin) and parameters describing the recognition of the work by the scientific community (e.g. citation rates).

          Results

          23,378 articles on ovarian cancer were analyzed. The USA had the highest activity of ovarian cancer research with a total of n = 9312 ovarian cancer-specific publications, followed by the UK (n = 1900), China (n = 1813), Germany (n = 1717) and Japan (n = 1673). Ovarian cancer-specific country h-index also showed a leading position of the USA with an h-index (HI) of 207, followed by the UK (HI = 122), Canada (HI = 99), Italy (HI = 97), Germany (HI = 84), and Japan (HI = 81). In the socio-economic analysis, the USA were ranked first with an average of 175.6 ovarian cancer-related publications per GDP per capita in 1000 US-$, followed by Italy with an index level of 46.85, the UK with 45.48, and Japan with 43.3. Overall, the USA and Western European nations, China and Japan constituted the scientific power players publishing the majority of highly cited ovarian cancer-related articles and dominated international collaborative efforts. African, Asian and South American countries played almost no visible role in the scientific community.

          Conclusions

          The quantity and scientific recognition of publications related to ovarian cancer are continuously increasing. The research endeavors in the field are concentrated in high-income countries with no involvement of lower-resource nations. Hence, worldwide collaborative efforts with the aim to exchange epidemiologic data, resources and knowledge have to be strengthened in the future to successfully alleviate the global burden related to ovarian cancer.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12942-016-0076-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 55

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2014.

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data were collected by the National Center for Health Statistics. A total of 1,665,540 new cancer cases and 585,720 cancer deaths are projected to occur in the United States in 2014. During the most recent 5 years for which there are data (2006-2010), delay-adjusted cancer incidence rates declined slightly in men (by 0.6% per year) and were stable in women, while cancer death rates decreased by 1.8% per year in men and by 1.4% per year in women. The combined cancer death rate (deaths per 100,000 population) has been continuously declining for 2 decades, from a peak of 215.1 in 1991 to 171.8 in 2010. This 20% decline translates to the avoidance of approximately 1,340,400 cancer deaths (952,700 among men and 387,700 among women) during this time period. The magnitude of the decline in cancer death rates from 1991 to 2010 varies substantially by age, race, and sex, ranging from no decline among white women aged 80 years and older to a 55% decline among black men aged 40 years to 49 years. Notably, black men experienced the largest drop within every 10-year age group. Further progress can be accelerated by applying existing cancer control knowledge across all segments of the population. © 2014 American Cancer Society, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global cancer statistics, 2002.

             D Parkin,  F Bray,  J Ferlay (2005)
            Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An index to quantify an individual's scientific research output.

               J. E. Hirsch (2005)
              I propose the index h, defined as the number of papers with citation number > or =h, as a useful index to characterize the scientific output of a researcher.
                Bookmark

                Author and article information

                Contributors
                +49 (0) 69 6301 6650 , doerthe.brueggmann@med.usc.edu
                arbsozmed@uni-frankfurt.de
                klingelhoefer@med.uni-frankfurt.de
                lpearce@umich.edu
                occup-med@uni-frankfurt.de
                Journal
                Int J Health Geogr
                Int J Health Geogr
                International Journal of Health Geographics
                BioMed Central (London )
                1476-072X
                13 January 2017
                13 January 2017
                2017
                : 16
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Keck School of Medicine of USC, Los Angeles, CA USA
                [2 ]Department of Female Health and Preventive Medicine, Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany
                [3 ]Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
                Article
                76
                10.1186/s12942-016-0076-2
                5237222
                28086974
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Public health

                socio-economic analysis, ovarian carcinoma, density equalizing mapping

                Comments

                Comment on this article