+1 Recommend
1 collections

      Therapeutics and Clinical Risk Management (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of clinical studies, outcomes and safety in all therapeutic areas and surgical intervention areas. Sign up for email alerts here.

      34,006 Monthly downloads/views I 2.755 Impact Factor I 4.5 CiteScore I 1.0 Source Normalized Impact per Paper (SNIP) I 0.598 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anticholinergic syndrome following an unintentional overdose of scopolamine


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Scopolamine hydrobromide (hyoscine) is an antimuscarinic drug which is primarily used in the prophylaxis and treatment of motion sickness and as a premedication to dry bronchial and salivary secretions. In acute overdosage, the main clinical problem is central nervous system (CNS) depression. In Australia, tablets containing scopolamine hydrobromide 0.3 mg are available over the counter in packs of ten. The recommended dose for adults is one to two tablets as a single dose, repeated four to six hours later, if required. The maximum dose stated on the pack is four tablets over a 24-hour period with a caution regarding drowsiness and blurred vision. We describe a patient who presented with symptoms of anticholinergic syndrome secondary to an unintentional overdose of scopolamine. Whilst at work, the patient noticed that he had forgotten his prescribed medication, domperidone, at home; a friend gave him some travel sickness medication which contained scopolamine for relief of nausea. On a previous occasion, he had experienced a similar, less severe reaction with another anticholinergic agent, loperamide. This report highlights the need to consider nonprescription products, ie, over the counter medications, herbal/nutritional supplements as causes of anticholinergic syndrome when a patient presents with symptoms suggestive of this diagnosis.

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          A method for estimating the probability of adverse drug reactions.

            • Record: found
            • Abstract: found
            • Article: not found

            Domperidone: review of pharmacology and clinical applications in gastroenterology.

            Domperidone is a dopamine-2 receptor antagonist. It acts as an antiemetic and a prokinetic agent through its effects on the chemoreceptor trigger zone and motor function of the stomach and small intestine. Unlike metoclopramide, it does not cause any adverse neurological symptoms as it has minimal penetration through the blood-brain barrier. It thus provides an excellent safety profile for long-term administration orally in the recommended doses. Domperidone is widely used in many countries and can now be officially prescribed to patients in the United States by an investigational new drug application for the treatment of gastroparesis and any condition causing chronic nausea and vomiting. In view of this additional clinical exposure of domperidone to a new generation of gastroenterologists and other specialists, the purpose of this timely review is to revisit the pharmacology, clinical application, and safety profile of this beneficial medication.
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacokinetics and pharmacodynamics in clinical use of scopolamine.

              The alkaloid L-(-)-scopolamine [L-(-)-hyoscine] competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. The parasympatholytic scopolamine, structurally very similar to atropine (racemate of hyoscyamine), is used in conditions requiring decreased parasympathetic activity, primarily for its effect on the eye, gastrointestinal tract, heart, and salivary and bronchial secretion glands, and in special circumstances for a CNS action. Therefore, scopolamine is most suitable for premedication before anesthesia and for antiemetic effects. This alkaloid is the most effective single agent to prevent motion sickness. Scopolamine was the first drug to be made commercially available in a transdermal therapeutic system (TTS-patch) delivering alkaloid. Recently, pharmacokinetic data on scopolamine in different biozlogic matrices were obtained most efficiently using liquid chromatographic-tandem mass spectrometric (LC-MS/MS) or gas chromatography online coupled to mass spectrometry. Pharmacokinetic parameters are dependent on the dosage form (oral dose, tablets; parenteral application; IV infusion; SC and IM injection). Scopolamine has a limited bioavailability if orally administered. The maximum drug concentration occurs approximately 0.5 hours after oral administration. Because only 2.6% of nonmetabolized L-(-)-scopolamine is excreted in urine, a first-pass metabolism is suggested to occur after oral administration of scopolamine. Because of its short half-life in plasma and dose-dependent adverse effects (in particular hallucinations and the less serious reactions, eg, vertigo, dry mouth, drowsiness), the clinical use of scopolamine administered orally or parenterally is limited. To minimize the relatively high incidence of side effects, the transdermal dosage form has been developed. The commercially available TTS-patch contains a 1.5-mg drug reservoir and a priming dose (140 microg) to reach the steady-state concentration of scopolamine quickly. The patch releases 0.5 mg alkaloid over a period of 3 days (releasing rate 5 microg/h). Following the transdermal application of scopolamine, the plasma concentrations of the drug indicate major interindividual variations. Peak plasma concentrations (Cmax) of approximately 100 pg/mL (range 11-240 pg/mL) of the alkaloid are reached after about 8 hours and achieve steady state. During a period of 72 hours the plaster releases scopolamine, so constantly high plasma levels (concentration range 56-245 pg/mL) are obtained, followed by a plateau of urinary scopolamine excretion. Although scopolamine has been used in clinical practice for many years, data concerning its metabolism and the renal excretion in man are limited. After incubation with beta-glucuronidase and sulfatase, the recovery of scopolamine in human urine increased from 3% to approximately 30% of the drug dose (intravenously administered). According to these results from enzymatic hydrolysis of scopolamine metabolites, the glucuronide conjugation of scopolamine could be the relevant pathway in healthy volunteers. However, scopolamine metabolism in man has not been verified stringently. An elucidation of the chemical structures of the metabolites extracted from human urine is still lacking. Scopolamine has been shown to undergo an oxidative demethylation during incubation with CYP3A (cytochrome P-450 subfamily). To inhibit the CYP3A located in the intestinal mucosa, components of grapefruit juice are very suitable. When scopolamine was administered together with 150 mL grapefruit juice, the alkaloid concentrations continued to increase, resulting in an evident prolongation of tmax (59.5 +/- 25.0 minutes; P < 0.001). The AUC0-24h values of scopolamine were higher during the grapefruit juice period. They reached approximately 142% of the values associated with the control group (P < 0.005). Consequently, the related absolute bioavailabilities (range 6% to 37%) were significantly higher than the corresponding values of the drug orally administered together with water (range 3% to 27%). The effect of the alkaloid on quantitative electroencephalogram (qEEG) and cognitive performance correlated with pharmacokinetics was shown in studies with healthy volunteers. From pharmacokinetic-pharmacodynamic modeling techniques, a direct correlation between serum concentrations of scopolamine and changes in total power in alpha-frequency band (EEG) in healthy volunteers was provided. The alkaloid readily crosses the placenta. Therefore, scopolamine should be administered to pregnant women only under observation. The drug is compatible with nursing and is considered to be nonteratogenic. In conclusion, scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting associated with motion sickness. Pharmacokinetics and pharmacodynamics of scopolamine depend on the dosage form. Effects on different cognitive functions have been extensively documented.

                Author and article information

                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                15 September 2009
                : 5
                : 719-723
                [1 ] Department of Pharmacy, The Alfred, Melbourne, Victoria, Australia
                [2 ] Intensive Care Unit, Box Hill Hospital, Melbourne, Victoria, Australia
                Author notes
                Correspondence: Carmela E Corallo, Pharmacy Department, Alfred Hospital, 55 Commercial Road, Victoria 3181, Australia, Tel +61 3 9706 5313, Fax +61 3 9076 5275, Email c.corallo@ 123456alfred.org.au
                © 2009 Corallo et al, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                Case Report

                scopolamine,domperidone,toxicity,nonprescription drugs,anticholinergic syndrome
                scopolamine, domperidone, toxicity, nonprescription drugs, anticholinergic syndrome


                Comment on this article