39
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication

      research-article
      1 , , 1
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several species of yeast, including the baker's yeast Saccharomyces cerevisiae, underwent a genome duplication roughly 100 million years ago. We analyze genetic networks whose members were involved in this duplication. Many networks show detectable redundancy and strong asymmetry in their interactions. For networks of co-expressed genes, we find evidence for network partitioning whereby the paralogs appear to have formed two relatively independent subnetworks from the ancestral network. We simulate the degeneration of networks after duplication and find that a model wherein the rate of interaction loss depends on the “neighborliness” of the interacting genes produces networks with parameters similar to those seen in the real partitioned networks. We propose that the rationalization of network structure through the loss of pair-wise gene interactions after genome duplication provides a mechanism for the creation of semi-independent daughter networks through the division of ancestral functions between these daughter networks.

          Abstract

          An analysis of how duplicated networks of genes (as a result of whole genome duplication in yeast) evolved shows that network partitioning occurred through loss of interactions, resulting in independent subnetworks.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

          Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive two-hybrid analysis to explore the yeast protein interactome.

            Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic expression programs in the response of yeast cells to environmental changes.

              We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                April 2006
                4 April 2006
                : 4
                : 4
                : e109
                Affiliations
                [1] 1Department of Genetics, Trinity College, University of Dublin, Dublin, Ireland
                University of Bath United Kingdom
                Article
                10.1371/journal.pbio.0040109
                1420641
                16555924
                3eeb7296-2333-4b7e-8c27-f240e25b024f
                Copyright: © 2006 Conant and Wolfe. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 November 2005
                : 8 February 2006
                Categories
                Research Article
                Bioinformatics/Computational Biology
                Evolution
                Genetics/Genomics/Gene Therapy
                Systems Biology
                Saccharomyces
                Yeast and Fungi
                Eukaryotes

                Life sciences
                Life sciences

                Comments

                Comment on this article