36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC.

          Materials and Methods

          The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated.

          Results

          CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC.

          Conclusions

          A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering: orthopedic applications.

          Because of an aging population and increased occurrence of sports-related injuries, musculoskeletal disorders have become one of the major health concerns in the United States. Current treatments, although fairly successful, do not provide the optimum therapy. These treatments typically rely on donor tissues obtained either from the patient or from another source. The former raises the issue of supply, whereas the latter poses the risk of rejection and disease transfer. This has prompted orthopedic surgeons and scientists to look for viable alternatives. In recent years, tissue engineering has gained increasing support as a method to treat orthopedic disorders. Because it uses principles of engineering, biology, and chemistry, tissue engineering may provide a more effective approach to the treatment of musculoskeletal disorders than traditional methods. This chapter presents a review of current methods and new tissue-engineering techniques for the treatment of disorders affecting bone, ligament, and cartilage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.

            Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the capacity of VEGF-releasing polymeric scaffolds with a bioactive glass coating was examined in vitro and in vivo using a rat critical-sized defect model. In the presence of a bioactive glass coating, we did not detect pronounced differences in the differentiation of human mesenchymal stem cells in vitro. However, we observed significantly enhanced mitogenic stimulation of endothelial cells in the presence of the bioactive glass coating, with an additive effect with VEGF release. This trend was maintained in vivo, where coated VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density at 2 weeks versus coated control scaffolds. At 12 weeks, bone mineral density was significantly increased in coated VEGF-releasing scaffolds versus coated controls, while only a slight increase in bone volume fraction was observed. The results of this study suggest that a bioactive glass coating on a polymeric substrate participates in bone healing through indirect processes which enhance angiogenesis and bone maturation and not directly on osteoprogenitor differentiation and bone formation. The mass of bioactive glass used in this study provides a comparable and potentially additive, response to localized VEGF delivery over early time points. These studies demonstrate a materials approach to achieve an angiogenic response formerly limited to the delivery of inductive growth factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of mammalian cell adhesion on surface-modified porous silicon.

              Porous silicon is a promising biomaterial that is non-toxic and biodegradable. Surface modification can offer control over the degradation rate and can also impart properties that promote cell adhesion. In this study, we modified the surface of porous silicon surface by ozone oxidation, silanisation or coating with collagen or serum. For each surface, topography was characterised using atomic force microscopy, wettability by water contact angle measurements, degradation in aqueous buffer by interferometric reflectance spectroscopy and surface chemistry by Fourier-transform infrared spectroscopy. The adhesion of rat pheochromocytoma (PC12) and human lens epithelial cells to these surfaces was investigated. Cells were incubated on the surfaces for 4 and 24 h, and adhesion characteristics were determined by using a fluorescent vital stain and cell counts. Collagen coated and amino silanised porous silicon promoted cell attachment for both cell lines whereas cells attached poorly to ozone oxidised and polyethylene glycol silanised surfaces. We showed that the two cell lines had different adhesion characteristics on the various surfaces at different time points. The use of the vitality assays Alamar Blue (redox based assay) and neutral red (active cellular uptake assay) with porous silicon was also investigated. We reveal incompatibilities between certain resazurin (Alamar Blue), lysosomal incorporation assays (neutral red) and porous silicon.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                25 April 2013
                : 8
                : 4
                : e62570
                Affiliations
                [1 ]Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
                [2 ]School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
                [3 ]Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
                University of California, San Diego, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LY ZXW WL. Performed the experiments: YL KZ YFT ZC JC YZ JWW SL LK. Analyzed the data: LY YL. Contributed reagents/materials/analysis tools: KZ YFT ZC. Wrote the paper: LY ZXW.

                Article
                PONE-D-13-02203
                10.1371/journal.pone.0062570
                3636220
                23638115
                3ef0a7c9-67c5-4bb0-9ba7-893fee1e5a09
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 January 2013
                : 22 March 2013
                Page count
                Pages: 13
                Funding
                This study was supported by the National Science Foundation of China (No. 31170913). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Biomaterials
                Model Organisms
                Animal Models
                Engineering
                Bioengineering
                Biomedical Engineering
                Materials Science
                Biomaterials
                Material by Structure
                Composite Materials
                Material Properties
                Mechanical Properties
                Materials Characterization
                Materials Design
                Medicine
                Anatomy and Physiology
                Musculoskeletal System
                Bone
                Surgery
                Orthopedic Surgery

                Uncategorized
                Uncategorized

                Comments

                Comment on this article