142
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Transcriptomic-Phylogenomic Analysis of the Evolutionary Relationships of Flatworms

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The interrelationships of the flatworms (phylum Platyhelminthes) are poorly resolved despite decades of morphological and molecular phylogenetic studies [ 1, 2]. The earliest-branching clades (Catenulida, Macrostomorpha, and Polycladida) share spiral cleavage and entolecithal eggs with other lophotrochozoans. Lecithoepitheliata have primitive spiral cleavage but derived ectolecithal eggs. Other orders (Rhabdocoela, Proseriata, Tricladida and relatives, and Bothrioplanida) all have derived ectolecithal eggs but have uncertain affinities to one another. The orders of parasitic Neodermata emerge from an uncertain position from within these ectolecithal classes. To tackle these problems, we have sequenced transcriptomes from 18 flatworms and 5 other metazoan groups. The addition of published data produces an alignment of >107,000 amino acids with less than 28% missing data from 27 flatworm taxa in 11 orders covering all major clades. Our phylogenetic analyses show that Platyhelminthes consist of the two clades Catenulida and Rhabditophora. Within Rhabditophora, we show the earliest-emerging branch is Macrostomorpha, not Polycladida. We show Lecithoepitheliata are not members of Neoophora but are sister group of Polycladida, implying independent origins of the ectolecithal eggs found in Lecithoepitheliata and Neoophora. We resolve Rhabdocoela as the most basally branching euneoophoran taxon. Tricladida, Bothrioplanida, and Neodermata constitute a group that appears to have lost both spiral cleavage and centrosomes. We identify Bothrioplanida as the long-sought closest free-living sister group of the parasitic Neodermata. Among parasitic orders, we show that Cestoda are closer to Trematoda than to Monogenea, rejecting the concept of the Cercomeromorpha. Our results have important implications for understanding the evolution of this major phylum.

          Highlights

          • Phylogenomics provide insights into the interrelationships of Platyhelminthes

          • Macrostomorpha are the basalmost rhabditophorans

          • Polycladida are sister group of Lecithoepitheliata/Prorhynchida

          • Bothrioplanida are the free-living sister group of Neodermata

          Abstract

          The interrelationships of the flatworms (phylum Platyhelminthes) are poorly resolved. Egger et al. assembled a phylogenomic dataset of >107,000 aligned amino acids with less than 28% missing data from 27 flatworm taxa in 11 orders covering all major clades and reconstruct a well-resolved tree with high confidence, revealing several unexpected clades.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing the root of bilaterian animals with scalable phylogenomic methods.

          A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from organisms targeted for their instability or lack of representation in prior analyses, and are analysed in combination with other publicly available data. We also designed new automated explicit methods for identifying and selecting common genes across different species, and developed highly optimized supercomputing tools to reconstruct relationships from gene sequences. The results of the work corroborate several recently established findings about animal relationships and provide new support for the placement of other groups. These new data and methods strongly uphold previous suggestions that Acoelomorpha is sister clade to all other bilaterian animals, find diminishing evidence for the placement of the enigmatic Xenoturbella within Deuterostomia, and place Cycliophora with Entoprocta and Ectoprocta. The work highlights the implications that these arrangements have for metazoan evolution and permits a clearer picture of ancestral morphologies and life histories in the deep past.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A revised six-kingdom system of life.

            A revised six-kingdom system of life is presented, down to the level of infraphylum. As in my 1983 system Bacteria are treated as a single kingdom, and eukaryotes are divided into only five kingdoms: Protozoa, Animalia, Fungi, Plantae and Chromista. Intermediate high level categories (superkingdom, subkingdom, branch, infrakingdom, superphylum, subphylum and infraphylum) are extensively used to avoid splitting organisms into an excessive number of kingdoms and phyla (60 only being recognized). The two 'zoological' kingdoms, Protozoa and Animalia, are subject to the International Code of Zoological Nomenclature, the kingdom Bacteria to the International Code of Bacteriological Nomenclature, and the three 'botanical' kingdoms (Plantae, Fungi, Chromista) to the International Code of Botanical Nomenclature. Circumscriptions of the kingdoms Bacteria and Plantae remain unchanged since Cavalier-Smith (1981). The kingdom Fungi is expanded by adding Microsporidia, because of protein sequence evidence that these amitochondrial intracellular parasites are related to conventional Fungi, not Protozoa. Fungi are subdivided into four phyla and 20 classes; fungal classification at the rank of subclass and above is comprehensively revised. The kingdoms Protozoa and Animalia are modified in the light of molecular phylogenetic evidence that Myxozoa are actually Animalia, not Protozoa, and that mesozoans are related to bilaterian animals. Animalia are divided into four subkingdoms: Radiata (phyla Porifera, Cnidaria, Placozoa, Ctenophora), Myxozoa, Mesozoa and Bilateria (bilateral animals: all other phyla). Several new higher level groupings are made in the animal kingdom including three new phyla: Acanthognatha (rotifers, acanthocephalans, gastrotrichs, gnathostomulids), Brachiozoa (brachiopods and phoronids) and Lobopoda (onychophorans and tardigrades), so only 23 animal phyla are recognized. Archezoa, here restricted to the phyla Metamonada and Trichozoa, are treated as a subkingdom within Protozoa, as in my 1983 six-kingdom system, not as a separate kingdom. The recently revised phylum Rhizopoda is modified further by adding more flagellates and removing some 'rhizopods' and is therefore renamed Cercozoa. The number of protozoan phyla is reduced by grouping Mycetozoa and Archamoebae (both now infraphyla) as a new subphylum Conosa within the phylum Amoebozoa alongside the subphylum Lobosa, which now includes both the traditional aerobic lobosean amoebae and Multicilia. Haplosporidia and the (formerly microsporidian) metchnikovellids are now both placed within the phylum Sporozoa. These changes make a total of only 13 currently recognized protozoan phyla, which are grouped into two subkingdoms: Archezoa and Neozoa the latter is modified in circumscription by adding the Discicristata, a new infrakingdom comprising the phyla Percolozoa and Euglenozoa). These changes are discussed in relation to the principles of megasystematics, here defined as systematics that concentrates on the higher levels of classes, phyla, and kingdoms. These principles also make it desirable to rank Archaebacteria as an infrakingdom of the kingdom Bacteria, not as a separate kingdom. Archaebacteria are grouped with the infrakingdom Posibacteria to form a new subkingdom, Unibacteria, comprising all bacteria bounded by a single membrane. The bacterial subkingdom Negibacteria, with separate cytoplasmic and outer membranes, is subdivided into two infrakingdoms: Lipobacteria, which lack lipopolysaccharide and have only phospholipids in the outer membrane, and Glycobacteria, with lipopolysaccharides in the outer leaflet of the outer membrane and phospholipids in its inner leaflet. (ABSTRACT TRUNCATED)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Acoelomorph flatworms are deuterostomes related to Xenoturbella.

              Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Biol
                Curr. Biol
                Current Biology
                Cell Press
                0960-9822
                1879-0445
                18 May 2015
                18 May 2015
                : 25
                : 10
                : 1347-1353
                Affiliations
                [1 ]Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
                [2 ]Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
                [3 ]Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
                [4 ]ETH Zurich, Department of Computer Science, Universitätsstrasse 19, 8092 Zurich, Switzerland
                [5 ]Université de Montréal, Département de Sciences Biologiques, Pavillon Marie-Victorin, CP 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
                [6 ]Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
                [7 ]Università degli Studi di Modena e Reggio Emilia, Via Campi 213/d, 41100 Modena, Italy
                [8 ]Université Tunis El-Manar Campus Universitaire, 2092 Tunis, Tunisia
                [9 ]Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
                Author notes
                []Corresponding author m.telford@ 123456ucl.ac.uk
                [10]

                Co-first author

                [11]

                Present address: CNRS, CBD UMR5547, Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 Route de Narbonne, 31062 Toulouse, France

                Article
                S0960-9822(15)00349-8
                10.1016/j.cub.2015.03.034
                4446793
                25866392
                3ef2f0e3-e9be-43fb-895f-51f4690e243b
                © 2015 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 January 2015
                : 27 February 2015
                : 19 March 2015
                Categories
                Report

                Life sciences
                Life sciences

                Comments

                Comment on this article