11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population pharmacokinetics of nintedanib, an inhibitor of tyrosine kinases, in patients with non-small cell lung cancer or idiopathic pulmonary fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          A population pharmacokinetic model was developed for nintedanib in patients with non-small cell lung cancer (NSCLC) or idiopathic pulmonary fibrosis (IPF). The effects of intrinsic and extrinsic patient factors on exposure of nintedanib and its main metabolite BIBF 1202 were studied.

          Methods

          Data from 1191 patients with NSCLC ( n = 849) or IPF ( n = 342) treated with oral nintedanib (once- or twice-daily, dose range 50–250 mg) in 4 Phase II or III studies were combined. Plasma concentrations of nintedanib ( n = 5611) and BIBF 1202 ( n = 5376) were analyzed using non-linear mixed-effects modeling.

          Results

          Pharmacokinetics of nintedanib were described by a one-compartment model with linear elimination, first-order absorption, and absorption lag time. For a typical patient, the absorption rate was 0.0827 h −1, apparent total clearance was 897 L/h, apparent volume of distribution at steady state was 465 L, and lag time was 25 min. Age, weight, smoking, and Asian race were statistically significant covariates influencing nintedanib exposure, but no individual covariate at extreme values (5th and 95th percentiles of baseline values for continuous covariates) resulted in a change of more than 33% relative to a typical patient. Pharmacokinetics and covariate effects for BIBF 1202 were similar to nintedanib. Mild or moderate renal impairment and mild hepatic impairment (classified by transaminase or bilirubin increase above the upper limit of normal) or underlying disease had no significant effects on nintedanib pharmacokinetics.

          Conclusions

          This model adequately described the pharmacokinetic profile of nintedanib in NSCLC and IPF populations and can be used for simulations exploring covariate effects and exposure–response analyses.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00280-017-3452-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found

          Prediction of Creatinine Clearance from Serum Creatinine

          A formula has been developed to predict creatinine clearance (C cr ) from serum creatinine (S cr ) in adult males: Ccr = (140 – age) (wt kg)/72 × S cr (mg/100ml) (15% less in females). Derivation included the relationship found between age and 24-hour creatinine excretion/kg in 249 patients aged 18–92. Values for C cr were predicted by this formula and four other methods and the results compared with the means of two 24-hour C cr’s measured in 236 patients. The above formula gave a correlation coefficient between predicted and mean measured Ccr·s of 0.83; on average, the difference between predicted and mean measured values was no greater than that between paired clearances. Factors for age and body weight must be included for reasonable prediction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models.

            Informative diagnostic tools are vital to the development of useful mixed-effects models. The Visual Predictive Check (VPC) is a popular tool for evaluating the performance of population PK and PKPD models. Ideally, a VPC will diagnose both the fixed and random effects in a mixed-effects model. In many cases, this can be done by comparing different percentiles of the observed data to percentiles of simulated data, generally grouped together within bins of an independent variable. However, the diagnostic value of a VPC can be hampered by binning across a large variability in dose and/or influential covariates. VPCs can also be misleading if applied to data following adaptive designs such as dose adjustments. The prediction-corrected VPC (pcVPC) offers a solution to these problems while retaining the visual interpretation of the traditional VPC. In a pcVPC, the variability coming from binning across independent variables is removed by normalizing the observed and simulated dependent variable based on the typical population prediction for the median independent variable in the bin. The principal benefit with the pcVPC has been explored by application to both simulated and real examples of PK and PKPD models. The investigated examples demonstrate that pcVPCs have an enhanced ability to diagnose model misspecification especially with respect to random effects models in a range of situations. The pcVPC was in contrast to traditional VPCs shown to be readily applicable to data from studies with a priori and/or a posteriori dose adaptations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.

              Idiopathic pulmonary fibrosis is a progressive and usually fatal lung disease characterized by fibroblast proliferation and extracellular matrix remodeling, which result in irreversible distortion of the lung's architecture. Although the pathogenetic mechanisms remain to be determined, the prevailing hypothesis holds that fibrosis is preceded and provoked by a chronic inflammatory process that injures the lung and modulates lung fibrogenesis, leading to the end-stage fibrotic scar. However, there is little evidence that inflammation is prominent in early disease, and it is unclear whether inflammation is relevant to the development of the fibrotic process. Evidence suggests that inflammation does not play a pivotal role. Inflammation is not a prominent histopathologic finding, and epithelial injury in the absence of ongoing inflammation is sufficient to stimulate the development of fibrosis. In addition, the inflammatory response to a lung fibrogenic insult is not necessarily related to the fibrotic response. Clinical measurements of inflammation fail to correlate with stage or outcome, and potent anti-inflammatory therapy does not improve outcome. This review presents a growing body of evidence suggesting that idiopathic pulmonary fibrosis involves abnormal wound healing in response to multiple, microscopic sites of ongoing alveolar epithelial injury and activation associated with the formation of patchy fibroblast-myofibroblast foci, which evolve to fibrosis. Progress in understanding the fibrogenic mechanisms in the lung is likely to yield more effective therapies.
                Bookmark

                Author and article information

                Contributors
                +49 (7351) 54-93077 , ulrike_1.schmid@boehringer-ingelheim.com
                Journal
                Cancer Chemother Pharmacol
                Cancer Chemother. Pharmacol
                Cancer Chemotherapy and Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0344-5704
                1432-0843
                8 November 2017
                8 November 2017
                2018
                : 81
                : 1
                : 89-101
                Affiliations
                ISNI 0000 0001 2171 7500, GRID grid.420061.1, Department of Translational Medicine and Clinical Pharmacology, , Boehringer Ingelheim Pharma GmbH & Co. KG, ; Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
                Article
                3452
                10.1007/s00280-017-3452-0
                5754397
                29119292
                3f045bc6-a09c-454f-87d6-f66c3365d24b
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 June 2017
                : 10 October 2017
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Oncology & Radiotherapy
                covariates,idiopathic pulmonary fibrosis,nintedanib,non-small cell lung cancer,population pharmacokinetics

                Comments

                Comment on this article