3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formation mechanism of binary complex based on β-lactoglobulin and propylene glycol alginate with different molecular weights: Structural characterization and delivery of curcumin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complexation of protein and polysaccharide has shown considerable potential for the encapsulation of functional food components. In this work, propylene glycol alginate (PGA) molecules with different molecular weights (100, 500, and 2,000 kDa) were prepared through H 2O 2 oxidation, which were further combined with β-lactoglobulin nanoparticles (β-lgNPs) to form PGA-β-lgNPs complexes for the delivery of curcumin (Cur). Results showed that the depolymerization of PGA molecule was resulted from the breakage of glycosidic bonds in the main chain, and the depolymerization rate of PGA molecule depended on the reaction time, temperature, solution pH and H 2O 2 concentration. As the increasing molecular weight of PGA, the particle size, zeta-potential and turbidity of the complexes were obviously increased. The formation of PGA/β-lgNPs complexes was mainly driven by non-covalent interaction, including electrostatic gravitational interaction, hydrogen bonding and hydrophobic effect. Interestingly, the difference in the molecular weight of PGA also led to significantly differences in the micro-morphology of the complexes, as PGA with a high molecular weight (2,000 kDa) generated the formation of a “fruit-tree” shaped structure, whereas PGA with relatively low molecular weight (100 and 500 kDa) led to spherical particles with a “core-shell” structure. In addition, the incorporation of PGA molecules into β-lgNPs dispersion also contributed to the improvement in the encapsulation efficiency of Cur as well as physicochemical stability of β-lgNPs, and PGA with a higher molecular weight was confirmed with a better effect. Findings in the current work may help to further understand the effect of molecular weight of polysaccharide on the physical and structural properties as well as effectiveness as delivery systems of polysaccharide-protein complexes, providing for the possibility for the design and development of more efficient carriers for bioactive compounds in food system.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Book: not found

          Principles of Fluorescence Spectroscopy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Curcumin--from molecule to biological function.

            Turmeric is traditionally used as a spice and coloring in foods. It is an important ingredient in curry and gives curry powder its characteristic yellow color. As a consequence of its intense yellow color, turmeric, or curcumin (food additive E100), is used as a food coloring (e.g. mustard). Turmeric contains the curcuminoids curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Recently, the health properties (neuroprotection, chemo-, and cancer prevention) of curcuminoids have gained increasing attention. Curcuminoids induce endogenous antioxidant defense mechanisms in the organism and have anti-inflammatory activity. Curcuminoids influence gene expression as well as epigenetic mechanisms. Synthetic curcumin analogues also exhibit biological activity. This Review describes the development of curcumin from a "traditional" spice and food coloring to a "modern" biological regulator. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural Characterization of Sodium Alginate and Calcium Alginate.

              Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca(2+) concentrations and for different alginate chain composition. We show that Ca(2+) ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                19 July 2022
                2022
                : 9
                : 965600
                Affiliations
                [1] 1School of Physical Science and Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University , Ningbo, China
                [2] 2Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China
                [3] 3Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
                [4] 4School of Public Health, Wuhan University , Wuhan, China
                [5] 5School of Food and Health, Beijing Technology and Business University , Beijing, China
                Author notes

                Edited by: Long Chen, Jiangnan University, China

                Reviewed by: Chunhua Wu, Fujian Agriculture and Forestry University, China; Qiangzhong Zhao, South China University of Technology, China; Weiwei Cheng, Shenzhen University, China

                *Correspondence: Dongdong Lin, lindongdong@ 123456nbu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Nutrition and Food Science Technology, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2022.965600
                9344013
                3f10f019-39a9-4875-b63e-a052bdb06237
                Copyright © 2022 Lin, Su, Chen, Wei, Zhang, Li and Yuan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 June 2022
                : 28 June 2022
                Page count
                Figures: 8, Tables: 2, Equations: 3, References: 41, Pages: 15, Words: 8494
                Categories
                Nutrition
                Original Research

                propylene glycol alginate,β-lactoglobulin,molecular weight,curcumin,formation mechanism,delivery system

                Comments

                Comment on this article