24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Portable nanoporous electrical biosensor for ultrasensitive detection of Troponin-T

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          To demonstrate the design, fabrication and testing of a portable, label-free biosensor for ultrasensitive detection of the cardiac Troponin-T (cTnT) from patient blood.

          Materials & methods:

          The biosensor is comprised of a nanoporous membrane integrated on to a microelectrode sensor platform for nanoconfinement effects. Charge perturbations due to antigen binding are recorded as impedance changes using electrochemical impedance spectroscopy.

          Results:

          The measured impedance change is used to quantitatively determine the cTnT concentration from the tested sample. We were successful in detecting and quantifying cardiac Troponin-T from a 40-patient cohort. The limit of detection was 0.01 pg/ml.

          Conclusion:

          This novel technology has promising preliminary results for rapid and sensitive detection of cTnT.

          Abstract

          Quantification of biomarkers is essential for disease diagnosis and management. Current laboratory-based analytical methods are labor-intensive and rely mostly on use of labels for detection. A simple, point-of-care method based on a label-free technique offers robust real-time measurements for detection of biomarkers. This study intended to develop a nanoporous electrical biosensor to measure the cardiac biomarker cardiac Troponin-T. A nanotechnology approach towards sensor design improves detection sensitivity. The sensor performance for detection of cardiac Troponin-T demonstrates the potential for adoption in a clinical setting. However, further validation experiments are required prior to implementation.

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electrochemical Biosensors - Sensor Principles and Architectures

          Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-Free Impedance Biosensors: Opportunities and Challenges.

            Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria.

              The realization of rapid, sensitive, and specific methods to detect foodborne pathogenic bacteria is central to implementing effective practice to ensure food safety and security. As a principle of transduction, the impedance technique has been applied in the field of microbiology as a means to detect and/or quantify foodborne pathogenic bacteria. The integration of impedance with biological recognition technology for detection of bacteria has led to the development of impedance biosensors that are finding wide-spread use in the recent years. This paper reviews the progress and applications of impedance microbiology for foodborne pathogenic bacteria detection, particularly the new aspects that have been added to this subject in the past few years, including the use of interdigitated microelectrodes, the development of chip-based impedance microbiology, and the use of equivalent circuits for analysis of the impedance systems. This paper also reviews the significant developments of impedance biosensors for bacteria detection in the past 5 years, focusing on microfabricated microelectrodes-based and microfluidic-based Faradaic electrochemical impedance biosensors, non-Faradaic impedance biosensors, and the integration of impedance biosensors with other techniques such as dielectrophoresis and electropermeabilization.
                Bookmark

                Author and article information

                Journal
                Future Sci OA
                Future Sci OA
                FSO
                Future Science OA
                Future Science Ltd (London, UK )
                2056-5623
                November 2015
                01 November 2015
                : 1
                : 3
                : FSO24
                Affiliations
                [1 ]Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
                [2 ]Department of Veterans Affairs, Oregon Health & Science University, Portland, OR, USA
                [3 ]Department of Pathology, Oregon Health & Science University, Portland, OR, USA
                [4 ]Department of Molecular & Cell Biology, University of Texas at Dallas, Richardson, TX, USA
                Author notes
                *Author for correspondence: shalini.prasad@ 123456utdallas.edu
                Article
                10.4155/fso.15.22
                5137999
                3f178e46-3400-438b-ae43-c5727bcbabb7
                © S Prasad et al.

                This work is licensed under a Creative Commons Attribution 4.0 License

                History
                Categories
                Preliminary Communication

                electrical double layer,impedance spectroscopy,nanoconfinement,nanoporous,troponin-t

                Comments

                Comment on this article