28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antagonistic Effects of a Mixture of Low-Dose Nonylphenol and Di-N-Butyl Phthalate (Monobutyl Phthalate) on the Sertoli Cells and Serum Reproductive Hormones in Prepubertal Male Rats In Vitro and In Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The estrogenic chemical nonylphenol (NP) and the antiandrogenic agent di-n-butyl phthalate (DBP) are regarded as widespread environmental endocrine disruptors (EDCs) which at high doses in some species of laboratory animals, such as mice and rats, have adverse effects on male reproduction and development. Given the ubiquitous coexistence of various classes of EDCs in the environment, their combined effects warrant clarification. In this study, we attempted to determine the mixture effects of NP and DBP on the testicular Sertoli cells and reproductive endocrine hormones in serum in male rats based on quantitative data analysis by a mathematical model. In the in vitro experiment, monobutyl phthalate (MBP), the active metabolite of DBP, was used instead of DBP. Sertoli cells were isolated from 9-day-old Sprague-Dawley rats followed by treatment with NP and MBP, singly or combined. Cell viability, apoptosis, necrosis, membrane integrity and inhibin-B concentration were tested. In the in vivo experiment, rats were gavaged on postnatal days 23–35 with a single or combined NP and DBP treatment. Serum reproductive hormone levels were recorded. Next, Bliss Independence model was employed to analyze the quantitative data obtained from the in vitro and in vivo investigation. Antagonism was identified as the mixture effects of NP and DBP (MBP). In this study, we demonstrate the potential of Bliss Independence model for the prediction of interactions between estrogenic and antiandrogenic agents.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Phthalates: toxicology and exposure.

          Phthalates are used as plasticizers in PVC plastics. As the phthalate plasticizers are not chemically bound to PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuff, other materials, etc. Consumer products containing phthalates can result in human exposure through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Humans are exposed through ingestion, inhalation, and dermal exposure during their whole lifetime, including intrauterine development. This paper presents an overview on current risk assessments done by expert panels as well as on exposure assessment data, based on ambient and on current human biomonitoring results. Some phthalates are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. Exposure assessment via modelling ambient data give hints that the exposure of children to phthalates exceeds that in adults. Current human biomonitoring data prove that the tolerable intake of children is exceeded to a considerable degree, in some instances up to 20-fold. Very high exposures to phthalates can occur via medical treatment, i.e. via use of medical devices containing DEHP or medicaments containing DBP phthalate in their coating. Because of their chemical properties exposure to phthalates does not result in bioaccumulation. However, health concern is raised regarding the developmental and/or reproductive toxicity of phthalates, even in environmental concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat.

            Phthalate esters (PE) such as DEHP are high production volume plasticizers used in vinyl floors, food wraps, cosmetics, medical products, and toys. In spite of their widespread and long-term use, most PE have not been adequately tested for transgenerational reproductive toxicity. This is cause for concern, because several recent investigations have shown that DEHP, BBP, DBP, and DINP disrupt reproductive tract development of the male rat in an antiandrogenic manner. The present study explored whether the antiandrogenic action of DEHP occurs by (1) inhibiting testosterone (T) production, or by (2) inhibiting androgen action by binding to the androgen receptor (AR). Maternal DEHP treatment at 750 mg/kg/day from gestational day (GD) 14 to postnatal day (PND) 3 caused a reduction in T production, and reduced testicular and whole-body T levels in fetal and neonatal male rats from GD 17 to PND 2. As a consequence, anogenital distance (AGD) on PND 2 was reduced by 36% in exposed male, but not female, offspring. By GD 20, DEHP treatment also reduced testis weight. Histopathological evaluations revealed that testes in the DEHP treatment group displayed enhanced 3ss-HSD staining and increased numbers of multifocal areas of Leydig cell hyperplasia as well as multinucleated gonocytes as compared to controls at GD 20 and PND 3. In contrast to the effects of DEHP on T levels in vivo, neither DEHP nor its metabolite MEHP displayed affinity for the human androgen receptor at concentrations up to 10 microM in vitro. These data indicate that DEHP disrupts male rat sexual differentiation by reducing T to female levels in the fetal male rat during a critical stage of reproductive tract differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor.

              By using a yeast detection system for androgenic and antiandrogenic effects of chemicals, we identified bisphenol A (BPA) and nonylphenol (NP) as antiandrogens. In this study, we report molecular mechanisms for the antiandrogenic action of BPA and NP. In the ARhLBD-activating signal cointegrator 1 (ASC1) yeast two-hybrid system, which reflects the androgen-dependent interaction between androgen receptor (AR) and its coactivator, ASC1, BPA and NP acted as potent AR antagonists comparable to a known strong antagonist, cyproterone acetate. Ligand competition assays revealed that [3H]5alpha-dihydroxytestosterone (DHT) binding to AR is inhibited a maximum of 30 and 40% at approximately 5 nM of NP and 50 nM of BPA, respectively. In addition, the nuclear translocation of green fluorescent protein (GFP)-AR fusion protein in the presence of testosterone was affected by the addition of BPA and NP, which cause rather dispersed distribution of GFP-AR between the nuclear and the cytoplasmic compartments. Furthermore, in transient transfection assays, BPA and NP inhibited androgen-induced AR transcriptional activity. Taken together, the results suggest that BPA and NP affect multiple steps of the activation and function of AR, thereby inhibiting the binding of native androgens to AR, AR nuclear localization, AR interaction with its coregulator, and its subsequent transactivation. These data may help us better understand the biological alterations induced by these environmental compounds.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 March 2014
                : 9
                : 3
                : e93425
                Affiliations
                [1 ]Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, China
                [2 ]Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
                [3 ]State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
                [4 ]Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
                [5 ]State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
                University Hospital of Münster, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DL YH XH. Performed the experiments: DL YH RW. Analyzed the data: DL YH. Contributed reagents/materials/analysis tools: DL XH WQ. Wrote the paper: DL YH ZX.

                Article
                PONE-D-13-38965
                10.1371/journal.pone.0093425
                3968147
                24676355
                3f21d01c-92a1-467d-b18b-735a5106b1b8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 September 2013
                : 6 March 2014
                Page count
                Pages: 9
                Funding
                This work was supported by National Natural Science Foundation of China (21377052, 31370524), Natural Science Foundation of Jiangsu Province of China (BK20131281, BK2012307), the National Basic Research Program of China (973 program 2010CB945103), and Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Endocrine System
                Biochemistry
                Hormones
                Organisms
                Animals
                Vertebrates
                Mammals
                Rodents
                Rats
                Physiology
                Endocrine Physiology
                Toxicology
                Predictive Toxicology
                Medicine and Health Sciences
                Health Care
                Environmental Health
                Public and Occupational Health
                Research and Analysis Methods
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article