61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Allelic Patterns of Nanog Expression Impart Embryonic Stem Cell Population Heterogeneity

      research-article
      1 , 1 , 2 , 3 , 4 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanog is a principal pluripotency regulator exhibiting a disperse distribution within stem cell populations in vivo and in vitro. Increasing evidence points to a functional role of Nanog heterogeneity on stem cell fate decisions. Allelic control of Nanog gene expression was reported recently in mouse embryonic stem cells. To better understand how this mode of regulation influences the observed heterogeneity of NANOG in stem cell populations, we assembled a multiscale stochastic population balance equation framework. In addition to allelic control, gene expression noise and random partitioning at cell division were considered. As a result of allelic Nanog expression, the distribution of Nanog exhibited three distinct states but when combined with transcriptional noise the profile became bimodal. Regardless of their allelic expression pattern, initially uniform populations of stem cells gave rise to the same Nanog heterogeneity within ten cell cycles. Depletion of NANOG content in cells switching off both gene alleles was slower than the accumulation of intracellular NANOG after cells turned on at least one of their Nanog gene copies pointing to Nanog state-dependent dynamics. Allelic transcription of Nanog also raises issues regarding the use of stem cell lines with reporter genes knocked in a single allelic locus. Indeed, significant divergence was observed in the reporter and native protein profiles depending on the difference in their half-lives and insertion of the reporter gene in one or both alleles. In stem cell populations with restricted Nanog expression, allelic regulation facilitates the maintenance of fractions of self-renewing cells with sufficient Nanog content to prevent aberrant loss of pluripotency. Our findings underline the role of allelic control of Nanog expression as a prime determinant of stem cell population heterogeneity and warrant further investigation in the contexts of stem cell specification and cell reprogramming.

          Author Summary

          Nanog is a key factor influencing the decision of a stem cell to remain pluripotent or differentiate. Each embryonic stem cell (ESC) in a population exhibits fluctuating Nanog levels resulting in heterogeneity which affects cell fate specification. The allelic regulation of Nanog was demonstrated recently but its implications on population heterogeneity are unclear. We developed a multiscale population balance equation (PBE) model and compared our results with pertinent experimental studies. Under allelic control the profile of Nanog features three peaks or distinct states. Transcriptional noise causes the distribution to become bimodal as suggested previously. When stem cells carrying a reporter transgene in an allelically regulated locus were examined, we observed non-matching distributions of the endogenous and reporter proteins. This led us to investigate the performance of reporter systems depending on insertion of the transgene in one or both alleles and the protein degradation dynamics. Lastly, our model was employed to address how allelic regulation affects the maintenance of pluripotency in stem cells with a single Nanog allele deletion. A fraction of these cells remains pluripotent while deletion of a single allele does not simply reduce NANOG uniformly for all ESCs but modulates NANOG heterogeneity directly.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.

          Embryonic stem (ES) cells undergo extended proliferation while remaining poised for multilineage differentiation. A unique network of transcription factors may characterize self-renewal and simultaneously suppress differentiation. We applied expression cloning in mouse ES cells to isolate a self-renewal determinant. Nanog is a divergent homeodomain protein that directs propagation of undifferentiated ES cells. Nanog mRNA is present in pluripotent mouse and human cell lines, and absent from differentiated cells. In preimplantation embryos, Nanog is restricted to founder cells from which ES cells can be derived. Endogenous Nanog acts in parallel with cytokine stimulation of Stat3 to drive ES cell self-renewal. Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels. Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision. These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway.

            It has been thought that early inner cell mass (ICM) is a homogeneous population and that cell position in the ICM leads to the formation of two lineages, epiblast (EPI) and primitive endoderm (PE), by E4.5. Here, however, we show that the ICM at E3.5 is already heterogeneous. The EPI- and PE-specific transcription factors, Nanog and Gata6, were expressed in the ICM in a random "salt and pepper" pattern, as early as E3.5, in a mutually exclusive manner. Lineage tracing showed predominant lineage restriction of single ICM cells at E3.5 to either lineage. In embryos lacking Grb2 where no PE forms, Gata6 expression was lost and all ICM cells were Nanog positive. We propose a model in which the ICM develops as a mosaic of EPI and PE progenitors at E3.5, dependent on Grb2-Ras-MAP kinase signaling, followed by later segregation of the progenitors into the appropriate cell layers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity?

              This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                July 2013
                July 2013
                11 July 2013
                : 9
                : 7
                : e1003140
                Affiliations
                [1 ]Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
                [2 ]Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
                [3 ]New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
                [4 ]Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
                Northeastern University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JW EST. Performed the experiments: JW EST. Analyzed the data: JW EST. Contributed reagents/materials/analysis tools: JW EST. Wrote the paper: JW EST.

                Article
                PCOMPBIOL-D-13-00307
                10.1371/journal.pcbi.1003140
                3708867
                23874182
                3f262869-6ad0-480d-a20e-a1016d5c5484
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 February 2013
                : 29 May 2013
                Page count
                Pages: 13
                Funding
                Funding support has been provided by the National Institutes of Health (NHLBI, R01HL103709) and the New York Stem Cell Science Trust (NYSTEM, contract C024355) to EST. This work was performed in part at the University at Buffalo's Center for Computational Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Developmental Biology
                Stem Cells
                Embryonic Stem Cells
                Stem Cell Lines
                Cell Differentiation
                Cell Fate Determination
                Engineering
                Bioengineering
                Biological Systems Engineering
                Mathematics
                Mathematical Computing
                Probability Theory
                Markov Model
                Stochastic Processes

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article