0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Boundary integral formulations for acoustic modelling of high-contrast media

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The boundary element method is an efficient algorithm for simulating acoustic propagation through homogeneous objects embedded in free space. The conditioning of the system matrix strongly depends on physical parameters such as density, wavespeed and frequency. In particular, high contrast in density and wavespeed across a material interface leads to an ill-conditioned discretisation matrix. Therefore, the convergence of Krylov methods to solve the linear system is slow. Here, specialised boundary integral formulations are designed for the case of acoustic scattering at high-contrast media. The eigenvalues of the resulting system matrix accumulate at two points in the complex plane that depend on the density ratio and stay away from zero. The spectral analysis of the Calder\'on preconditioned PMCHWT formulation yields a single accumulation point. Benchmark simulations demonstrate the computational efficiency of the high-contrast Neumann formulation for scattering at high-contrast media.

          Related collections

          Author and article information

          Journal
          09 April 2021
          Article
          2104.04618
          3f349e03-a990-4ccf-895d-a991b1fa39dd

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          math.NA cs.NA

          Numerical & Computational mathematics
          Numerical & Computational mathematics

          Comments

          Comment on this article