10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Dietary Protein on Thyroid Axis Activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thyroid hormones (TH) are essential for the normal development and function of every vertebrate. The hypothalamic-pituitary-thyroid (HPT) axis is regulated to maintain euthyroid status. One of the most influential environmental factors that determines HPT axis activity is nutrition. Both food availability and substrate diversity affect thyroid hormone economy. The present paper aims to summarize literature data concerning the influence of the amount and the type of protein on thyroid axis activity. This review sheds light on the contribution of a low-protein diet or insufficient intake of essential amino acids to TH abnormalities. We believe that the knowledge of these dependencies could improve the results of nutritional interventions in thyroid axis disorders and enhance the efficiency of animal breeding.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid hormone regulation of metabolism.

          Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological and molecular basis of thyroid hormone action.

            P M Yen (2001)
            Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature

              Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                22 December 2017
                January 2018
                : 10
                : 1
                : 5
                Affiliations
                Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences WULS-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland; katarzyna_lachowicz@ 123456sggw.pl (K.L.); danuta_rosolowska_huszcz@ 123456sggw.pl (D.R.-H.)
                Author notes
                [* ]Correspondence: ewelina_palkowska_gozdzik@ 123456sggw.pl ; Tel.: +48-22-59-370-27
                Article
                nutrients-10-00005
                10.3390/nu10010005
                5793233
                29271877
                3f3678c9-b167-4732-a0bc-2547eb19ffcf
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 September 2017
                : 18 December 2017
                Categories
                Review

                Nutrition & Dietetics
                thyroid hormones,thyroxine,triiodothyronine,thyrotropin,dietary proteins,diet,amino acids

                Comments

                Comment on this article