7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical use of lenvatinib in combination with everolimus for the treatment of advanced renal cell carcinoma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Renal cell carcinoma (RCC) represents 2%–3% of all cancers in adults, and its pathogenesis is mainly related to altered cellular response to hypoxia. Lenvatinib, a novel multitarget tyrosine kinase inhibitor (TKI), represents a therapeutic option, in combination with mammalian target of rapamycin (mTOR) inhibitor everolimus, for the treatment of metastatic RCC (mRCC).

          Aim

          The objective of this article is to review the evidence about the treatment of mRCC with combination of lenvatinib plus everolimus.

          Evidence review

          Phase I studies supported clinical activity of lenvatinib in mRCC. A randomized, Phase II, open-label, multicenter trial demonstrated the clinical efficacy of combination treatment with lenvatinib plus everolimus in patients with progressive mRCC after prior therapy with TKI. Median progression-free survival was improved by 9 months with the combination therapy compared to the single-agent everolimus, with an overall response rate of 43% for the experimental regimen. Lenvatinib plus everolimus appeared to be slightly less toxic than single-agent lenvatinib and more toxic than single-agent everolimus; grade 3–4 adverse events occurred in 71% of patients. Currently, lenvatinib plus everolimus has US Food and Drug Administration approval for its use in mRCC after failure of previous treatment with TKI.

          Conclusion

          The combination therapy with lenvatinib plus everolimus might be a promising choice for second-line treatment of mRCC patients. Based on the results of the Phase II trial, it is possible to speculate that the combination therapy could be appropriate for patients with high disease burden or strongly symptomatic patients.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial.

          Cabozantinib is an oral inhibitor of tyrosine kinases including MET, VEGFR, and AXL. The randomised phase 3 METEOR trial compared the efficacy and safety of cabozantinib versus the mTOR inhibitor everolimus in patients with advanced renal cell carcinoma who progressed after previous VEGFR tyrosine-kinase inhibitor treatment. Here, we report the final overall survival results from this study based on an unplanned second interim analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer.

            The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3.

              Axitinib (AG-013736) is a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases 1 to 3 that is in clinical development for the treatment of solid tumors. We provide a comprehensive description of its in vitro characteristics and activities, in vivo antiangiogenesis, and antitumor efficacy and translational pharmacology data. The potency, kinase selectivity, pharmacologic activity, and antitumor efficacy of axitinib were assessed in various nonclinical models. Axitinib inhibits cellular autophosphorylation of VEGF receptors (VEGFR) with picomolar IC(50) values. Counterscreening across multiple kinase and protein panels shows it is selective for VEGFRs. Axitinib blocks VEGF-mediated endothelial cell survival, tube formation, and downstream signaling through endothelial nitric oxide synthase, Akt and extracellular signal-regulated kinase. Following twice daily oral administration, axitinib produces consistent and dose-dependent antitumor efficacy that is associated with blocking VEGFR-2 phosphorylation, vascular permeability, angiogenesis, and concomitant induction of tumor cell apoptosis. Axitinib in combination with chemotherapeutic or targeted agents enhances antitumor efficacy in many tumor models compared with single agent alone. Dose scheduling studies in a human pancreatic tumor xenograft model show that simultaneous administration of axitinib and gemcitabine without prolonged dose interruption or truncation of axitinib produces the greatest antitumor efficacy. The efficacious drug concentrations predicted in nonclinical studies are consistent with the range achieved in the clinic. Although axitinib inhibits platelet-derived growth factor receptors and KIT with nanomolar in vitro potencies, based on pharmacokinetic/pharmacodynamic analysis, axitinib acts primarily as a VEGFR tyrosine kinase inhibitor at the current clinical exposure. The selectivity, potency for VEGFRs, and robust nonclinical activity may afford broad opportunities for axitinib to improve cancer therapy.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2017
                30 June 2017
                : 13
                : 799-806
                Affiliations
                Medical Oncology Unit, University Hospital of Parma, Parma, Italy
                Author notes
                Correspondence: Sebastiano Buti, Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy, Tel +39 0521 702 316, Email sebabuti@ 123456libero.it
                Article
                tcrm-13-799
                10.2147/TCRM.S126910
                5499780
                © 2017 Leonetti et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Medicine

                rcc, renal cell carcinoma, evidence-based review, everolimus, lenvatinib

                Comments

                Comment on this article