0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spinal Cord Injury Causes Reduction of Galanin and Gastrin Releasing Peptide mRNA Expression in the Spinal Ejaculation Generator of Male Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal cord injury (SCI) in men is commonly associated with sexual dysfunction, including anejaculation, and chronic mid-thoracic contusion injury in male rats also impairs ejaculatory reflexes. Ejaculation is controlled by a spinal ejaculation generator consisting of a population of lumbar spinothalamic (LSt) neurons that control ejaculation through release of four neuropeptides including galanin and gastrin releasing peptide (GRP) onto lumbar and sacral autonomic and motor nuclei. It was recently demonstrated that spinal contusion injury in male rats caused reduction of GRP-immunoreactivity, but not galanin-immunoreactivity in LSt cells, indicative of reduced GRP peptide levels, but inconclusive results for galanin. The current study further tests the hypothesis that contusion injury causes a disruption of GRP and galanin mRNA in LSt cells. Male rats received mid-thoracic contusion injury and galanin and GRP mRNA were visualized 8 weeks later in the lumbar spinal cord using fluorescent in situ hybridization. Spinal cord injury significantly reduced GRP and galanin mRNA in LSt cells. Galanin expression was higher in LSt cells compared to GRP. However, expression of the two transcripts were positively correlated in LSt cells in both sham and SCI animals, suggesting that expression for the two neuropeptides may be co-regulated. Immunofluorescent visualization of galanin and GRP peptides demonstrated a significant reduction in GRP-immunoreactivity, but not galanin in LSt cells, confirming the previous observations. In conclusion, SCI reduced GRP and galanin expression in LSt cells with an apparent greater impact on GRP peptide levels. GRP and galanin are both essential for triggering ejaculation and thus such reduction may contribute to ejaculatory dysfunction following SCI in rats.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A sensitive and reliable locomotor rating scale for open field testing in rats.

          Behavioral assessment after spinal cord contusion has long focused on open field locomotion using modifications of a rating scale developed by Tarlov and Klinger (1954). However, on-going modifications by several groups have made interlaboratory comparison of locomotor outcome measures difficult. The purpose of the present study was to develop an efficient, expanded, and unambiguous locomotor rating scale to standardize locomotor outcome measures across laboratories. Adult rats (n = 85) were contused at T7-9 cord level with an electromagnetic or weight drop device. Locomotor behavior was evaluated before injury, on the first or second postoperative day, and then for up to 10 weeks. Scoring categories and attributes were identified, operationally defined, and ranked based on the observed sequence of locomotor recovery patterns. These categories formed the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale. The data indicate that the BBB scale is a valid and predictive measure of locomotor recovery able to distinguish behavioral outcomes due to different injuries and to predict anatomical alterations at the lesion center. Interrater reliability tests indicate that examiners with widely varying behavioral testing experience can apply the scale consistently and obtain similar scores. The BBB Locomotor Rating Scale offers investigators a more discriminating measure of behavioral outcome to evaluate treatments after spinal cord injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting recovery: priorities of the spinal cord-injured population.

            In the United States alone, there are more than 200,000 individuals living with a chronic spinal cord injury (SCI). Healthcare for these individuals creates a significant economic burden for the country, not to mention the physiological, psychological, and social suffering these people endure everyday. Regaining partial function can lead to greater independence, thereby improving quality of life. To ascertain what functions are most important to the SCI population, in regard to enhancing quality of life, a novel survey was performed in which subjects were asked to rank seven functions in order of importance to their quality of life. The survey was distributed via email, postal mail, the internet, interview, and word of mouth to the SCI community at large. A total of 681 responses were completed. Regaining arm and hand function was most important to quadriplegics, while regaining sexual function was the highest priority for paraplegics. Improving bladder and bowel function was of shared importance to both injury groups. A longitudinal analysis revealed only slight differences between individuals injured 3 years. The majority of participants indicated that exercise was important to functional recovery, yet more than half either did not have access to exercise or did not have access to a trained therapist to oversee that exercise. In order to improve the relevance of research in this area, the concerns of the SCI population must be better known and taken into account. This approach is consistent with and emphasized by the new NIH roadmap to discovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Macrophage activation and its role in repair and pathology after spinal cord injury.

              The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                22 June 2021
                2021
                : 12
                : 670536
                Affiliations
                [1] 1Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center , Jackson, MS, United States
                [2] 2Graduate Program in Neuroscience, University of Mississippi Medical Center , Jackson, MS, United States
                [3] 3Department of Biological Sciences, Kent State University , Kent, OH, United States
                Author notes

                Edited by: Peter John Shortland, Western Sydney University, Australia

                Reviewed by: Ping Yip, Queen Mary University of London, United Kingdom; Hirotaka Sakamoto, Okayama University, Japan

                *Correspondence: Lique M. Coolen jcoolen@ 123456kent.edu

                This article was submitted to Neurotrauma, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2021.670536
                8258150
                34239493
                3f3edb46-6784-412e-a19b-13355406b0b0
                Copyright © 2021 Wiggins, Sledd and Coolen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 February 2021
                : 21 May 2021
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 60, Pages: 11, Words: 8606
                Funding
                Funded by: Craig H. Neilsen Foundation 10.13039/100005191
                Funded by: U.S. Department of Defense 10.13039/100000005
                Categories
                Neurology
                Original Research

                Neurology
                contusion spinal injury,sexual dysfunction,anejaculation,lumbar spinal cord,urogenital
                Neurology
                contusion spinal injury, sexual dysfunction, anejaculation, lumbar spinal cord, urogenital

                Comments

                Comment on this article