3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Leaf litter traits predominantly control litter decomposition in streams worldwide

      1 , 2 , 3 , 1 , 2 , 1 , 2 , 4 , 1 , 2
      Global Ecology and Biogeography
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.

          Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns of plant leaf N and P in relation to temperature and latitude.

            A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global carbon dioxide emissions from inland waters.

              Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25)  petagrams of carbon (Pg C) per year from streams and rivers and 0.32(+0.52)(-0.26)  Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.
                Bookmark

                Author and article information

                Contributors
                Journal
                Global Ecology and Biogeography
                Global Ecol Biogeogr
                Wiley
                1466-822X
                1466-8238
                June 13 2019
                October 2019
                July 09 2019
                October 2019
                : 28
                : 10
                : 1469-1486
                Affiliations
                [1 ]College of Biology and the Environment Nanjing Forestry University Nanjing Jiangsu China
                [2 ]Co‐Innovation Centre for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu China
                [3 ]Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
                [4 ]Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona
                Article
                10.1111/geb.12966
                3f456733-5e2e-428b-a006-46d428bb19ef
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article