52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Abnormal Phenotypes of Cartilage and Bone in Calcium-Sensing Receptor Deficient Mice Are Dependent on the Actions of Calcium, Phosphorus, and PTH

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH) 2D 3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient (CaR −/−) mice to those of double homozygous CaR– and 1α(OH)ase–deficient [CaR −/−1α(OH)ase −/−] mice or those of double homozygous CaR– and PTH–deficient [CaR −/−PTH −/−] mice at 2 weeks of age. Compared to wild-type littermates, CaR −/− mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR −/− mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR −/− mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR −/− mice and that defects in endochondral bone formation in CaR −/− mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.

          Author Summary

          Mice with homozygous deletion of the calcium-sensing receptor (CaR) mimic the syndrome of neonatal severe hyperparathyroidism (NSHPT) in humans with very high circulating parathyroid hormone (PTH) and severe life-threatening hypercalcemia. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH) 2D 3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient mice to those of double homozygous CaR– and 1,25(OH) 2D 3–deficient mice or those of double homozygous CaR– and PTH–deficient mice. CaR–deficient mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, severe skeletal growth retardation, and abnormalities; and most died within 2 weeks of age. Deletion of 1,25(OH) 2D 3 in CaR–deficient mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, and slight improvement in skeletal growth. Deletion of PTH in CaR–deficient mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, and normalization in skeletal growth. Our results indicate that reductions in hypercalcemia reduce the early lethality of CaR–deficient mice and that deletion of PTH in patients with NSHPT may normalize skeletal growth and development.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction.

            The active form of vitamin D, 1alpha,25-dihydroxyvitamin D [1alpha,25(OH)2D], is synthesized from its precursor 25 hydroxyvitamin D [25(OH)D] via the catalytic action of the 25(OH)D-1alpha-hydroxylase [1alpha(OH)ase] enzyme. Many roles in cell growth and differentiation have been attributed to 1,25(OH)2D, including a central role in calcium homeostasis and skeletal metabolism. To investigate the in vivo functions of 1,25(OH)2D and the molecular basis of its actions, we developed a mouse model deficient in 1alpha(OH)ase by targeted ablation of the hormone-binding and heme-binding domains of the 1alpha(OH)ase gene. After weaning, mice developed hypocalcemia, secondary hyperparathyroidism, retarded growth, and the skeletal abnormalities characteristic of rickets. These abnormalities are similar to those described in humans with the genetic disorder vitamin D dependent rickets type I [VDDR-I; also known as pseudovitamin D-deficiency rickets (PDDR)]. Altered non-collagenous matrix protein expression and reduced numbers of osteoclasts were also observed in bone. Female mutant mice were infertile and exhibited uterine hypoplasia and absent corpora lutea. Furthermore, histologically enlarged lymph nodes in the vicinity of the thyroid gland and a reduction in CD4- and CD8-positive peripheral T lymphocytes were observed. Alopecia, reported in vitamin D receptor (VDR)-deficient mice and in humans with VDDR-II, was not seen. The findings establish a critical role for the 1alpha(OH)ase enzyme in mineral and skeletal homeostasis as well as in female reproduction and also point to an important role in regulating immune function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones.

              We investigated the direct effects of changes in free ionized extracellular calcium concentrations ([Ca2+]o) on osteoblast function and the involvement of the calcium-sensing receptor (CaR) in mediating these responses. CaR mRNA and protein were detected in osteoblast models, freshly isolated fetal rat calvarial cells and murine clonal osteoblastic 2T3 cells, and in freshly frozen, undecalcified preparations of human mandible and rat femur. In fetal rat calvarial cells, elevating [Ca2+]o and treatment with gadolinium, a nonpermeant CaR agonist, resulted in phosphorylation of the extracellular signal-regulated kinases 1 and 2, Akt, and glycogensynthase kinase 3beta, consistent with signals of cell survival and proliferation. In agreement, cell number was increased under these conditions. Expression of the osteoblast differentiation markers core binding factor alpha1, osteocalcin, osteopontin, and collagen I mRNAs was increased by high [Ca2+]o, as was mineralized nodule formation. Alkaline phosphatase activity was maximal for [Ca2+]o between 1.2 and 1.8 mM. Inhibition of CaR by NPS 89636 blocked responses to the CaR agonists. In conclusion, we show that small deviations of [Ca2+]o from physiological values have a profound impact on bone cell fate, by means of the CaR and independently of systemic calciotropic peptides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2011
                September 2011
                22 September 2011
                : 7
                : 9
                : e1002294
                Affiliations
                [1 ]State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
                [2 ]Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, China
                [3 ]Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
                [4 ]Department of Medicine, McGill University, Montreal, Canada
                [5 ]Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                University of Washington, United States of America
                Author notes

                Conceived and designed the experiments: DM. Performed the experiments: JL FL WS CT. Analyzed the data: JL WS GD. Contributed reagents/materials/analysis tools: GD AK EB DG. Wrote the paper: DM EB DG.

                Article
                PGENETICS-D-11-00733
                10.1371/journal.pgen.1002294
                3178615
                21966280
                3f5828f6-7f9c-4d4b-824e-3d4dab030e87
                Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 April 2011
                : 30 July 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Medicine
                Endocrinology
                Endocrine Physiology
                Nutrition
                Vitamins

                Genetics
                Genetics

                Comments

                Comment on this article