Blog
About

2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bidirectional Selection for Body Weight on Standing Genetic Variation in a Chicken Model

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experimental populations of model organisms provide valuable opportunities to unravel the genomic impact of selection in a controlled system. The Virginia body weight chicken lines represent a unique resource to investigate signatures of selection in a system where long-term, single-trait, bidirectional selection has been carried out for more than 60 generations. At 55 generations of divergent selection, earlier analyses of pooled genome resequencing data from these lines revealed that 14.2% of the genome showed extreme differentiation between the selected lines, contained within 395 genomic regions. Here, we report more detailed analyses of these data exploring the regions displaying within- and between-line genomic signatures of the bidirectional selection applied in these lines. Despite the strict selection regime for opposite extremes in body weight, this did not result in opposite genomic signatures between the lines. The lines often displayed a duality of the sweep signatures, where an extended region of homozygosity in one line, in contrast to mosaic pattern of heterozygosity in the other line. These haplotype mosaics consisted of short, distinct haploblocks of variable between-line divergence, likely the results of a complex demographic history involving bottlenecks, introgressions and moderate inbreeding. We demonstrate this using the example of complex haplotype mosaicism in the growth1 QTL. These mosaics represent the standing genetic variation available at the onset of selection in the founder population. Selection on standing genetic variation can thus result in different signatures depending on the intensity and direction of selection.

          Related collections

          Most cited references 60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate short read alignment with Burrows–Wheeler transform

            Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

              Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS--the 1000 Genome pilot alone includes nearly five terabases--make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                8 February 2019
                April 2019
                : 9
                : 4
                : 1165-1173
                Affiliations
                [* ]Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
                []Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
                Author notes
                [1]

                Present address: Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden and Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden

                [2 ]Corresponding author: University of Gothenburg, Dept for Biological and Environmental Sciences, Mette Lillie, PO Box 463, SE 405 30 Göteborg. E-mail: mette.lillie@ 123456bioenv.gu.se
                Article
                GGG_400038
                10.1534/g3.119.400038
                6469407
                30737239
                Copyright © 2019 Lillie et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 61, Pages: 9
                Product
                Categories
                Investigations

                Genetics

                quantitative trait, body weight, selective sweeps, white plymouth rock, chicken

                Comments

                Comment on this article