Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.

Proceedings of the National Academy of Sciences of the United States of America

Visual Perception, physiology, Rest, Nerve Net, Models, Neurological, Memory, Magnetic Resonance Imaging, Humans, Gyrus Cinguli, Functional Laterality, Cognition, Brain Mapping, Brain, Adult

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Functional imaging studies have shown that certain brain regions, including posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), consistently show greater activity during resting states than during cognitive tasks. This finding led to the hypothesis that these regions constitute a network supporting a default mode of brain function. In this study, we investigate three questions pertaining to this hypothesis: Does such a resting-state network exist in the human brain? Is it modulated during simple sensory processing? How is it modulated during cognitive processing? To address these questions, we defined PCC and vACC regions that showed decreased activity during a cognitive (working memory) task, then examined their functional connectivity during rest. PCC was strongly coupled with vACC and several other brain regions implicated in the default mode network. Next, we examined the functional connectivity of PCC and vACC during a visual processing task and show that the resultant connectivity maps are virtually identical to those obtained during rest. Last, we defined three lateral prefrontal regions showing increased activity during the cognitive task and examined their resting-state connectivity. We report significant inverse correlations among all three lateral prefrontal regions and PCC, suggesting a mechanism for attenuation of default mode network activity during cognitive processing. This study constitutes, to our knowledge, the first resting-state connectivity analysis of the default mode and provides the most compelling evidence to date for the existence of a cohesive default mode network. Our findings also provide insight into how this network is modulated by task demands and what functions it might subserve.

      Related collections

      Most cited references 36

      • Record: found
      • Abstract: found
      • Article: not found

      A default mode of brain function.

      A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Searching for a baseline: functional imaging and the resting human brain.

        Functional brain imaging in humans has revealed task-specific increases in brain activity that are associated with various mental activities. In the same studies, mysterious, task-independent decreases have also frequently been encountered, especially when the tasks of interest have been compared with a passive state, such as simple fixation or eyes closed. These decreases have raised the possibility that there might be a baseline or resting state of brain function involving a specific set of mental operations. We explore this possibility, including the manner in which we might define a baseline and the implications of such a baseline for our understanding of brain function.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Functional connectivity in the motor cortex of resting human brain using echo-planar mri

            Bookmark

            Author and article information

            Journal
            10.1073/pnas.0135058100
            140943
            12506194

            Comments

            Comment on this article