142
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Efficient Behavior of Small-World Networks

      ,
      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We introduce the concept of efficiency of a network as a measure of how efficiently it exchanges information. By using this simple measure, small-world networks are seen as systems that are both globally and locally efficient. This gives a clear physical meaning to the concept of "small world," and also a precise quantitative analysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices.

          Neuroanatomy places critical constraints on the functional connectivity of the cerebral cortex. To analyze these constraints we have examined the relationship between structural features of networks (expressed as graphs) and the patterns of functional connectivity to which they give rise when implemented as dynamical systems. We selected among structurally varying graphs using as selective criteria a number of global information-theoretical measures that characterize functional connectivity. We selected graphs separately for increases in measures of entropy (capturing statistical independence of graph elements), integration (capturing their statistical dependence) and complexity (capturing the interplay between their functional segregation and integration). We found that dynamics with high complexity were supported by graphs whose units were organized into densely linked groups that were sparsely and reciprocally interconnected. Connection matrices based on actual neuroanatomical data describing areas and pathways of the macaque visual cortex and the cat cortex showed structural characteristics that coincided best with those of such complex graphs, revealing the presence of distinct but interconnected anatomical groupings of areas. Moreover, when implemented as dynamical systems, these cortical connection matrices generated functional connectivity with high complexity, characterized by the presence of highly coherent functional clusters. We also found that selection of graphs as they responded to input or produced output led to increases in the complexity of their dynamics. We hypothesize that adaptation to rich sensory environments and motor demands requires complex dynamics and that these dynamics are supported by neuroanatomical motifs that are characteristic of the cerebral cortex.
            Bookmark

            Author and article information

            Journal
            PRLTAO
            Physical Review Letters
            Phys. Rev. Lett.
            American Physical Society (APS)
            0031-9007
            1079-7114
            October 2001
            October 17 2001
            : 87
            : 19
            Article
            10.1103/PhysRevLett.87.198701
            11690461
            3f6b430a-7bcf-4fbb-8bb6-9b7396a4c2fc
            © 2001

            http://link.aps.org/licenses/aps-default-license

            History

            Comments

            Comment on this article