+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Tacrolimus (Tac) and cyclosporine (CsA) are mainly metabolized by CYP3A4 and CYP3A5. Several studies have demonstrated an association between the CYP3A5 genotype and Tac dose requirements. Recently, CYP3A4, PPARA, and POR gene variants have been shown to influence CYP3A metabolism. The present study investigated potential associations between CYP3A5*3, CYP3A4*22, PPARA c.209-1003G>A and c.208 + 3819A>G, and POR*28 alleles and dose-adjusted concentrations (C/D) of Tac and CsA in 177 renal transplant patients early post-transplant.


          All patients ( n = 177) were genotyped for CYP3A4*22, CYP3A5*3, POR*28, PPARA c.209-1003G>A, and PPARA c.208 + 3819A>G using real-time polymerase chain reaction (PCR) and melting curve analysis with allele-specific hybridization probes or PCR restriction fragment length polymorphisms (RFLP) methods. Drug concentrations and administered doses were retrospectively collected from patient charts at Oslo University Hospital, Rikshospitalet, Norway. One steady-state concentration was collected for each patient.


          We confirmed a significant impact of the CYP3A5*3 allele on Tac exposure. Patients with POR*28 and PPARA variant alleles demonstrated 15 % lower ( P = 0.04) and 19 % higher ( P = 0.01) Tac C 0/D respectively. CsA C 2/D was 53 % higher among CYP3A4*22 carriers ( P = 0.03).


          The results support the use of pre-transplant CYP3A5 genotyping to improve initial dosing of Tac, and suggest that Tac dosing may be further individualized by additional POR and PPARA genotyping. Furthermore, initial CsA dosing may be improved by pre-transplant CYP3A4*22 determination.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00228-014-1656-3) contains supplementary material, which is available to authorized users

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical pharmacokinetics of tacrolimus.

          Tacrolimus, a novel macrocyclic lactone with potent immunosuppressive properties, is currently available as an intravenous formulation and as a capsule for oral use, although other formulations are under investigation. Tacrolimus concentrations in biological fluids have been measured using a number of methods, which are reviewed and compared in the present article. The development of a simple, specific and sensitive assay method for measuring concentrations of tacrolimus is limited by the low absorptivity of the drug, low plasma and blood concentrations, and the presence of metabolites and other drugs which may interfere with the determination of tacrolimus concentrations. Currently, most of the pharmacokinetic data available for tacrolimus are based on an enzyme-linked immunosorbent assay method, which does not distinguish tacrolimus from its metabolites. The rate of absorption of tacrolimus is variable with peak blood or plasma concentrations being reached in 0.5 to 6 hours; approximately 25% of the oral dose is bioavailable. Tacrolimus is extensively bound to red blood cells, with a mean blood to plasma ratio of about 15; albumin and alpha 1-acid glycoprotein appear to primarily bind tacrolimus in plasma. Tacrolimus is completely metabolised prior to elimination. The mean disposition half-life is 12 hours and the total body clearance based on blood concentration is approximately 0.06 L/h/kg. The elimination of tacrolimus is decreased in the presence of liver impairment and in the presence of several drugs. Various factors that contribute to the large inter- and interindividual variability in the pharmacokinetics of tacrolimus are reviewed here. Because of this variability, the narrow therapeutic index of tacrolimus, and the potential for several drug interactions, monitoring of tacrolimus blood concentrations is useful for optimisation of therapy and dosage regimen design.
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of initial tacrolimus dose using pharmacogenetic testing.

            Retrospective studies have demonstrated that patients who are expressors of cytochrome P4503A5 (CYP3A5) require a higher tacrolimus dose to achieve a therapeutic trough concentration (C(0)). The aim of this study was to evaluate this effect prospectively by pretransplantation adaptation. We randomly assigned 280 renal transplant recipients to receive tacrolimus either according to CYP3A5 genotype or according to the standard daily regimen. The primary end point was the proportion of patients within the targeted C(0). Secondary end points included the number of dose modifications and the delay in achieving the targeted C(0). In the group receiving the adapted dose, a higher proportion of patients had values within the targeted C(0) at day 3 after initiation of tacrolimus (43.2% vs. 29.1%; P = 0.03); they required fewer dose modifications, and the targeted C(0) was achieved by 75% of these patients more rapidly. The clinical end points were similar in the two groups. Pharmacogenetic adaptation of the daily dose of tacrolimus is associated with improved achievement of the target C(0). Whether this improvement will affect clinical outcomes requires further evaluation.
              • Record: found
              • Abstract: found
              • Article: not found

              A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.

              Tacrolimus (Tac) is a potent immunosuppressant with considerable toxicity. Tac pharmacokinetics varies between individuals and thus complicates its use in preventing rejection after kidney transplantation. This variability might be caused by genetic polymorphisms in metabolizing enzymes. We used TaqMan analyses to evaluate the impact of a newly discovered CYP3A4 (cytochrome P450, family 3, subfamily A, polypeptide 4) single-nucleotide polymorphism (SNP) (rs35599367C>T; CYP3A4*22) on Tac pharmacokinetics in 185 renal transplant recipients who participated in an international randomized controlled clinical trial (fixed-dose, concentration-controlled study). The overall mean daily-dose requirement to reach the same predose Tac blood concentration was 33% lower for carriers of the T variant allele than for rs35599367CC patients (95% CI, -46% to -20%; P = 0.018). When combined with the *3 genotype of the CYP3A5 (cytochrome P450, family 3, subfamily A, polypeptide 5) gene, the rs35599367C>T SNP was also associated with a risk of supratherapeutic Tac concentrations (>15 μg/L) during the first 3 days after surgery, with an odds ratio of 8.7 for carriers of the CYP3A4 T allele plus CYP3A5*3/*3 (P = 0.027) and 4.2 for the CYP3A4 CC homozygotes plus CYP3A5*3/*3 (P = 0.002), compared with CYP3A4 CC homozygotes having 1 or 2 CYP3A5*1 alleles. The overall increase in the Tac dose-adjusted trough blood concentration was +179% for carriers of the CYP3A4 T allele with CYP3A5*3/*3 (P T polymorphism is associated with a significantly altered Tac metabolism and therefore increases the risk of supratherapeutic Tac concentrations early after transplantation. Analysis of this CYP3A4*22 SNP may help in identifying patients at risk of Tac overexposure.

                Author and article information

                +47-22857519 , +47-22854402 ,
                Eur J Clin Pharmacol
                Eur. J. Clin. Pharmacol
                European Journal of Clinical Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                22 March 2014
                22 March 2014
                : 70
                : 685-693
                [ ]Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Box 1068, Blindern, 0316 Oslo, Norway
                [ ]Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
                [ ]Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
                [ ]Department of Pharmacology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
                © The Author(s) 2014

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2014


                Comment on this article