52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA) is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA), a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial–mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT) with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype–pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases.

          Author Summary

          The amount of a given transcript or protein in a cell is determined by a balance of expression and repression in a complex network of biological processes. This delicate balance is compromised in complex genetic diseases such as cancer by alterations in the activation patterns of functionally important biological processes known as pathways. Over the last years, a large number of microarray experiments profiling the expression levels of more than 20,000 human genes in hundreds of tumor samples have shown that most cancer types are heterogeneous diseases, each characterized by many different expression subtypes. The biological and clinical goal is to explain the observed tumor and clinical heterogeneity in terms of specific patterns of altered pathways. The bioinformatic challenge is therefore to devise mathematical tools that explicitly attempt to infer these altered pathways. To this end, we applied a signal processing tool in a meta-analysis of breast cancer, encompassing more than 800 tumor specimens derived from four different patient cohorts, and showed that this algorithm significantly outperforms popular standard bioinformatics tools in identifying altered pathways underlying breast cancer. These results show that the same tool could be applied to other complex human genetic diseases to better elucidate the underlying altered pathways.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene Ontology: tool for the unification of biology

            Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cluster analysis and display of genome-wide expression patterns.

              A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                August 2007
                17 August 2007
                29 June 2007
                : 3
                : 8
                : e161
                Affiliations
                [1 ] Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
                [2 ] Department of Oncology, University of Cambridge, Cambridge, United Kingdom
                [3 ] Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
                [4 ] Département d'Ingénierie Mathématique, Université Catholique de Louvain, Belgium
                The University of Tokyo, Japan
                Author notes
                * To whom correspondence should be addressed. E-mail: aet21@ 123456cam.ac.uk
                Article
                07-PLCB-RA-0076R2 plcb-03-08-13
                10.1371/journal.pcbi.0030161
                1950343
                17708679
                3f999ffd-f27a-42a3-9f1e-cf0fae1a39f7
                Copyright: © 2007 Teschendorff et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 February 2007
                : 28 June 2007
                Page count
                Pages: 16
                Categories
                Research Article
                Computational Biology
                Genetics and Genomics
                Oncology
                Homo (Human)
                Custom metadata
                Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C (2007) Elucidating the altered transcriptional programs in breast cancer using Independent Component Analysis. PLoS Comput Biol 3(8): e161. doi: 10.1371/journal.pcbi.0030161

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article