21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma.

          Methods

          Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique.

          Results

          NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801.

          Conclusions

          Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1.

          The Forkhead transcription factors AFX, FKHR and FKHR-L1 are orthologues of DAF-16, a Forkhead factor that regulates longevity in Caenorhabditis elegans. Here we show that overexpression of these Forkhead transcription factors causes growth suppression in a variety of cell lines, including a Ras-transformed cell line and a cell line lacking the tumour suppressor PTEN. Expression of AFX blocks cell-cycle progression at phase G1, independent of functional retinoblastoma protein (pRb) but dependent on the cell-cycle inhibitor p27kip1. Indeed, AFX transcriptionally activates p27kip1, resulting in increased protein levels. We conclude that AFX-like proteins are involved in cell-cycle regulation and that inactivation of these proteins is an important step in oncogenic transformation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p21 is necessary for the p53-mediated G1 arrest in human cancer cells.

            DNA-damaging agents induce a p53-dependent G1 arrest that may be critical for p53-mediated tumor suppression. It has been suggested that p21WAF1/CIP1, a cdk inhibitory protein transcriptionally regulated by p53, is an effector of this arrest. To test this hypothesis, an isogenic set of human colon adenocarcinoma cell lines differing only in their p21 status was created. The parental cell line underwent the expected cell cycle changes upon induction of p53 expression by DNA damage, but the G1 arrest was completely abrogated in p21-deficient cells. These results unambiguously establish p21 as a critical mediator of one well-documented p53 function and have important implications for understanding cell cycle checkpoints and the mechanism(s) through which p53 inhibits human neoplasia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate receptor function in learning and memory.

              G RIEDEL (2003)
              The contribution of glutamate to synaptic transmission, plasticity and development is well established; current evidence is based on diverse approaches to decipher function and malfunction of this principal transmitter. With respect to learning and memory, we are now able to identify more specifically the role played by the three main glutamate receptor classes in learning and memory: centre stage is clearly the NMDA receptor, with overwhelming evidence proving its involvement in the actual learning process (encoding), throughout the animal kingdom. This is discussed with respect to many different types of learning. Evidence for the contribution of the AMPA receptors (AMPARs) is less clear-cut due to the general problem of specificity: block of AMPARs will shutdown neuronal communication, and this will affect various components essential for learning. Therefore, the role of AMPARs cannot be established in isolation. Problems of interpretation are outlined and a specific involvement of AMPARs in the regulation of neuronal excitation related to learning is proposed. Metabotropic glutamate receptors (mGluRs) may contribute very little to the actual acquisition of new information. However, memory formation appears to require mGluRs, through the modulation of consolidation and/or recall. Overall, mGluR functions seem variable and dependent on brain structure and learning task.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2013
                10 October 2013
                : 13
                : 468
                Affiliations
                [1 ]Departments of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
                Article
                1471-2407-13-468
                10.1186/1471-2407-13-468
                3852080
                24112473
                3faa2755-7cee-4c73-89e2-e548b7f92327
                Copyright © 2013 Yamaguchi et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 April 2013
                : 8 October 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                mk-801,nbqx,foxo,txnip,p27,g1 cell cycle arrest,hepg2,huh-7,hlf
                Oncology & Radiotherapy
                mk-801, nbqx, foxo, txnip, p27, g1 cell cycle arrest, hepg2, huh-7, hlf

                Comments

                Comment on this article