10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The diagnosis of multiple sclerosis (MS) is currently based solely on clinical and magnetic resonance imaging features. However, histopathological studies have revealed four different patterns of lesion pathology in patients diagnosed with MS, suggesting that MS may be a pathologically heterogeneous syndrome rather than a single disease entity.

          Objective

          The aim of this study was to investigate whether patients with pattern I MS differ from patients with pattern II or III MS with regard to cerebrospinal fluid (CSF) findings, especially with reference to intrathecal IgG synthesis, which is found in most patients with MS but is frequently missing in MS mimics such as aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-IgG-positive encephalomyelitis.

          Methods

          Findings from 68 lumbar punctures in patients who underwent brain biopsy as part of their diagnostic work-up and who could be unequivocally classified as having pattern I, pattern II or pattern III MS were analysed retrospectively.

          Results

          Oligoclonal bands (OCBs) were present in 88.2% of samples from pattern I MS patients but in only 27% of samples from patients with pattern II or pattern III MS ( P < 0.00004); moreover, OCBs were present only transiently in some of the latter patients. A polyspecific intrathecal IgG response to measles, rubella and/or varicella zoster virus (so-called MRZ reaction) was previously reported in 60–80% of MS patients, but was absent in all pattern II or III MS patients tested ( P < 0.00001 vs. previous cohorts). In contrast, the albumin CSF/serum ratio (QAlb), a marker of blood–CSF barrier function, was more frequently elevated in samples from pattern II and III MS patients ( P < 0.002). Accordingly, QAlb values and albumin and total protein levels were higher in pattern II and III MS samples than in pattern I MS samples ( P < 0.005, P < 0.009 and P < 0.006, respectively).

          Conclusions

          Patients with pattern II or pattern III MS differ significantly from patients with pattern I MS as well as from previous, histologically non-classified MS cohorts with regard to both intrathecal IgG synthesis and blood–CSF barrier function. Our findings strongly corroborate the notion that pattern II and pattern III MS are entities distinct from pattern I MS.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

          Background The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. Objective To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. Methods Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). Results Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. Conclusion This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flow rate of cerebrospinal fluid (CSF)--a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases.

            Many neurological diseases are accompanied by increased protein concentrations in the cerebrospinal fluid (CSF), described as a blood-CSF barrier dysfunction. The earlier interpretation as a "leakage" of the blood-CSF barrier for serum proteins could be revised by introduction of a "population variation coefficient" of the CSF/serum quotients for IgG, IgA and IgM (delta Q/Q) which is evaluated as a function of increasing albumin quotients (QAlb). The data presented here are based on specimens from 4380 neurological patients. These population variation coefficients were found to be constant over two orders of magnitude of normal and pathological CSF protein concentrations (QAlb = 1.6.10(-3)-150.10(-3)). This constancy indicates that there was no change in blood-CSF barrier related structures with respect to diffusion controlled protein transfer from blood into CSF and hence no change in molecular size dependent selectivity. The pathological increase of plasma protein concentrations in CSF in neurological diseases could also be explained quantitatively by a decrease of CSF flow rate due to its bifunctional influence on CSF protein concentration: reduced volume exchange, and as newly stated, increased molecular net flux into CSF without change of permeability coefficients. Again, on the basis of a changing CSF flow rate, the hyperbolic functions, which describe empirically the changing quotient ratios between proteins of different size (e.g. QIgG:QAlb) with increasing CSF protein content (QAlb) can likewise be derived from the laws of diffusion as the physiologically relevant description. The hyperbolic discrimination line between brain-derived and blood-derived protein fractions in CSF in the quotient diagrams for CSF diagnosis can be further improved on the basis of the large number of cases investigated. Other physiological and pathological aspects, such as high CSF protein values in the normal newborn, in spinal blockade, in meningeal inflammatory processes, CNS leukemia or polyradiculitis as well as animal species dependent variations can each be interpreted as due to a difference or change in the CSF flow rate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders

              Background Serum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved. Results We analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to mediate CDC at high-titer levels. Conclusions We could show for the first time that a subset of AQP4-IgG seronegative patients with NMO and HR-NMO exhibit a MOG-IgG mediated immune response, whereas MOG is not a target antigen in cases with an AQP4-directed humoral immune response.
                Bookmark

                Author and article information

                Contributors
                ++49-6221-56-4747 , sven.jarius@med.uni-heidelberg.de
                fbkoenig@gmx.net
                imetz@gwdg.de
                klemens.ruprecht@charite.de
                friedemann.paul@charite.de
                wbrueck@med.uni-goettingen.de
                brigitte.wildemann@med.uni-heidelberg.de
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                29 August 2017
                29 August 2017
                2017
                : 14
                : 171
                Affiliations
                [1 ]ISNI 0000 0001 2190 4373, GRID grid.7700.0, Molecular Neuroimmunology Group, Department of Neurology, , University of Heidelberg, ; Heidelberg, Germany
                [2 ]ISNI 0000 0001 2364 4210, GRID grid.7450.6, Department of Neuropathology, , University of Göttingen, ; Göttingen, Germany
                [3 ]ISNI 0000 0001 2218 4662, GRID grid.6363.0, Department of Neurology, , Charité University Medicine Berlin, ; Berlin, Germany
                [4 ]NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
                Article
                929
                10.1186/s12974-017-0929-z
                5576197
                28851393
                3fb31da5-8d01-47b8-a131-f005099991e6
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 February 2017
                : 26 July 2017
                Funding
                Funded by: German Federal Ministry of Education and Research-funded Competence Network Multiple Sclerosis (KKNMS)
                Award ID: KKNMS
                Funded by: German Federal Ministry of Education and Research-funded Competence Network Multiple Sclerosis (KKNMS)
                Funded by: German Federal Ministry of Education and Research-funded Competence Network Multiple Sclerosis (KKNMS)
                Funded by: Dietmar Hopp Foundation
                Funded by: Merck Serono Germany
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Neurosciences
                multiple sclerosis,histopathology,pattern i lesions,pattern ii lesions,pattern iii lesions,cerebrospinal fluid,oligoclonal bands,intrathecal igg synthesis,blood-csf barrier dysfunction,total protein,qigg,qalb

                Comments

                Comment on this article