50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Perfluoroalkyl and Polyfluoroalkyl Substances and Indicators of Immune Function in Children Aged 12 – 19 years: NHANES

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are immunotoxic in laboratory studies. Humans studies of immune effects are inconsistent. Using the U.S. National Health and Nutrition Examination Survey (NHANES) we examined PFAS serum concentration and indicators of prevalent immune function among 12 to 19 year old children.

          Methods

          In this cross-sectional study we examined PFAS serum concentration in relation to measles, mumps, and rubella antibody concentrations in NHANES 1999 – 2000 and 2003 – 2004 (n=1,191) and to allergic conditions and allergic sensitization in NHANES 2005 – 2006 (n=640).

          Results

          In adjusted, survey-weighted models, a doubling of perfluorooctane sulfonate (PFOS) concentration among seropositive children was associated with a 13.3% (95% CI −19.9, −6.2) decrease in rubella antibody concentration and a 5.9% decrease in mumps antibody concentration (95% CI −9.9, −1.6). We observed no adverse association between exposure and current allergic conditions, including asthma. Children with higher PFOS concentration were less likely to be sensitized to any allergen (OR 0.74, 95% CI 0.58, 0.95).

          Conclusion

          Increased exposure to several PFAS was associated with lower levels to mumps and rubella antibody concentrations, especially among seropositive individuals. These lower antibody concentrations may indicate a less robust response to vaccination or greater waning of vaccine-derived immunity over time.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Biological monitoring of polyfluoroalkyl substances: A review.

          Polyfluoroalkyl substances (PFSs) are used in industrial and commercial products and can degrade to persistent perfluorocarboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs). Temporal trend studies using human, fish, bird, and marine mammal samples indicate that exposure to PFSs has increased significantly over the past 15-25 years. This review summarizes the biological monitoring of PFCAs, PFSAs, and related PFSs in wildlife and humans, compares concentrations and contamination profiles among species and locations, evaluatesthe bioaccumulation/biomagnification in the environment, discusses possible sources, and identifies knowledge gaps. PFSs can reach elevated concentrations in humans and wildlife inhabiting industrialized areas of North America, Europe, and Asia (2-30,000 ng/ mL or ng/g of wet weight (ww)). PFSs have also been detected in organisms from the Arctic and mid-ocean islands (< or = 3000 ng/g ww). In humans, PFSAs and PFCAs have been shown to vary among ethnic groups and PFCA/PFSA profiles differ from those in wildlife with high proportions of perfluorooctanoic acid and perfluorooctane sulfonate. The pattern of contamination in wildlife varied among species and locations suggesting multiple emission sources. Food web analyses have shown that PFCAs and PFSAs can bioaccumulate and biomagnify in marine and freshwater ecosystems. Knowledge gaps with respect to the transport, accumulation, biodegradation, temporal/spatial trends and PFS precursors have been identified. Continuous monitoring with key sentinel species and standardization of analytical methods are recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008.

            Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia

              Background Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007. Objectives To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration. Methods Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May–June 2007. Results For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May–June 2007 and May–August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November–December 2007 and May–June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 25–28% per year). Conclusions The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation.
                Bookmark

                Author and article information

                Journal
                0100714
                6400
                Pediatr Res
                Pediatr. Res.
                Pediatric research
                0031-3998
                1530-0447
                8 October 2016
                22 October 2015
                February 2016
                14 October 2016
                : 79
                : 2
                : 348-357
                Affiliations
                [1 ]Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY USA
                [2 ]Department of Medicine, Mount Sinai School of Medicine, New York, NY USA
                Author notes
                [* ]Corresponding Author: Cheryl R. Stein, Ph.D., Department of Preventive Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1057, New York, NY 10029-6574, Phone: 212-824-7083, Fax: 212-996-0407, cheryl.stein@ 123456mssm.edu
                Article
                NIHMS714413
                10.1038/pr.2015.213
                5065061
                26492286
                3fd11af8-b68a-4f10-ab75-ba3c4e17d960

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Pediatrics
                Pediatrics

                Comments

                Comment on this article