1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alarming decline of freshwater trigger species in western Mediterranean key biodiversity areas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theidentification of key biodiversity areas (KBA) was initiated by the International Union for Conservation of Nature in 2004 to overcome taxonomic biases in the selection of important areas for conservation, including freshwater ecosystems. Since then, several KBAs have been identified mainly based on the presence of trigger species (i.e., species that trigger either the vulnerability and or the irreplaceability criterion and thus identify a site as a KBA). However, to our knowledge, many of these KBAs have not been validated. Therefore, classical surveys of the taxa used to identify freshwater KBAs (fishes, molluscs, odonates, and aquatic plants) were conducted in Douro (Iberian Peninsula) and Sebou (Morocco) River basins in the Mediterranean Biodiversity Hotspot. Environmental DNA analyses were undertaken in the Moroccan KBAs. There was a mismatch between the supposed and actual presence of trigger species. None of the trigger species were found in 43% and 50% of all KBAs surveyed in the Douro and Sebou basins, respectively. Shortcomings of freshwater KBA identification relate to flawed or lack of distribution data for trigger species. This situation results from a misleading initial identification of KBAs based on poor (or even inaccurate) ecological information or due to increased human disturbance between initial KBA identification and the present. To improve identification of future freshwater KBAs, we suggest selecting trigger species with a more conservative approach; use of local expert knowledge and digital data (to assess habitat quality, species distribution, and potential threats); consideration of the subcatchment when delineating KBAs boundaries; thoughtful consideration of terrestrial special areas for conservation limits; and periodic field validation.

          Abstract

          Article impact statement: The delineation of some KBAs and their focal areas has shortcomings related to flawed data or lack of distribution data for trigger species.

          Translated abstract

          Alarming decline of freshwater trigger species in western Mediterranean Key Biodiversity Areas

          Resumen

          La identificación de las áreas clave de biodiversidad (ACB) fue iniciada por la Unión Internacional para la Conservación de la Naturaleza en 2004 con el objetivo de sobreponerse a los sesgos taxonómicos en la selección de áreas importantes para la conservación, incluyendo los ecosistemas de agua dulce. Desde entonces, varias ACB han sido identificadas principalmente con base en la presencia de especies desencadenantes (es decir, especies que desencadenan el criterio de vulnerabilidad o de carácter irremplazable y por lo tanto identifican a un sitio como una ACB). Sin embargo, a nuestro conocimiento, muchas de estas ACB no han sido validadas. Por lo tanto, los censos clásicos de taxones utilizados para identificar las ACB de agua dulce (peces, moluscos, odonatos y plantas acuáticas) fueron realizados en las cuencas de los ríos Duero (Península Ibérica) y Sebou (Marruecos) en el Punto Caliente de Biodiversidad del Mediterráneo. Realizamos análisis de ADN ambiental en las ACB de Marruecos. Hubo una discrepancia entre la supuesta presencia y la actual presencia de especies desencadenantes. Ninguna de las especies desencadenantes se encontró en 43% y 50% de las ACB censadas en las cuencas del Duero y del Sebou, respectivamente. Las deficiencias en la identificación de las ACB de agua dulce están relacionadas con la carencia de datos o datos erróneos sobre la distribución de las especies desencadenantes. Esta situación resulta en una identificación inicial engañosa de las ACB con base en información ecológica deficiente (o incluso incorrecta) o también puede deberse al incremento en las perturbaciones humanas ocurridas entre la identificación de la ACB y el presente. Para mejorar la identificación de ACB de agua dulce en el futuro, sugerimos que la selección de especies desencadenantes se realice con un enfoque más conservador; que se usen el conocimiento local de los expertos y los datos digitales (para evaluar la calidad del hábitat, la distribución de las especies y las amenazas potenciales); que se consideren las subcuencas cuando se delimiten las fronteras de las ACB; que se consideren cuidadosamente las áreas de especies terrestres para los límites de conservación; y que se realicen validaciones periódicas de campo.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging threats and persistent conservation challenges for freshwater biodiversity

          In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.

            Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity

                Bookmark

                Author and article information

                Contributors
                joanafgnogueira93@gmail.com
                Journal
                Conserv Biol
                Conserv Biol
                10.1111/(ISSN)1523-1739
                COBI
                Conservation Biology
                John Wiley and Sons Inc. (Hoboken )
                0888-8892
                1523-1739
                06 August 2021
                October 2021
                : 35
                : 5 ( doiID: 10.1111/cobi.v35.5 )
                : 1367-1379
                Affiliations
                [ 1 ] CIBIO/InBIO – Research Center in Biodiversity and Genetic Resources University of Porto Vairão Portugal
                [ 2 ] CBMA – Centre of Molecular and Environmental Biology, Department of Biology University of Minho Braga Portugal
                [ 3 ] Université Cadi Ayyad, Muséum d'Histoire Naturelle de Marrakech, Laboratoire Eau, Biodiversité et Changement Climatique Marrakech Morocco
                [ 4 ] Research Institute for Nature and Forest (INBO) Brussels Belgium
                [ 5 ] CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research University of Porto Matosinhos Portugal
                [ 6 ] IUCN SSC Freshwater Plant Specialist Group Stroud UK
                [ 7 ] IUCN Centre for Mediterranean Cooperation Malaga Spain
                [ 8 ] Institut de Systématique, Évolution, Biodiversité ISYEB – Museum National d'Histoire Naturelle, CNRS Sorbonne Université, EPHE, Université des Antilles Paris France
                [ 9 ] Water Research Institute (IRSA) National Research Council (CNR) Verbania Italy
                [ 10 ] IUCN SSC Molluscs Specialist Group Devon UK
                [ 11 ] Department of Zoology Poznan University of Life Sciences Poznań Poland
                [ 12 ] SPYGEN, Savoie Technolac Le Bourget‐du‐Lac France
                [ 13 ] Federal Center for Integrated Arctic Research Russian Academy of Sciences Arkhangelsk Russia
                [ 14 ] CITAB‐UTAD – Centre for Research and Technology of Agro‐Environment and Biological Sciences University of Trás‐os‐Montes and Alto Douro, Forestry Department Vila Real Portugal
                [ 15 ] Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Bragança Portugal
                Author notes
                [*] [* ] Correspondence

                Joana Garrido Nogueira, CIBIO/InBIO – Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal.

                Email: joanafgnogueira93@ 123456gmail.com

                Author information
                https://orcid.org/0000-0002-5576-3625
                https://orcid.org/0000-0002-5961-5515
                https://orcid.org/0000-0002-7958-1420
                https://orcid.org/0000-0003-4299-0375
                https://orcid.org/0000-0003-3213-1980
                https://orcid.org/0000-0002-6261-3270
                https://orcid.org/0000-0003-1239-8231
                https://orcid.org/0000-0001-5829-5479
                https://orcid.org/0000-0002-2761-7962
                Article
                COBI13810
                10.1111/cobi.13810
                9292581
                34355419
                3fdb81e8-e39b-4550-b420-748b98ec01ac
                © 2021 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 07 May 2021
                : 18 November 2020
                : 11 May 2021
                Page count
                Figures: 5, Tables: 2, Pages: 13, Words: 7370
                Categories
                Conservation Practice and Policy
                Conservation Practice and Policy
                Custom metadata
                2.0
                October 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.7 mode:remove_FC converted:18.07.2022

                Ecology
                focal areas,iberia,morocco,protected areas,trigger species,área focal,áreas protegidas,especie desencadenante,marruecos

                Comments

                Comment on this article

                scite_

                Similar content5

                Cited by4

                Most referenced authors729