147
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone marrow-derived mononuclear cells (BM MNC) have been effectively used to treat experimental stroke. Most of the preclinical trials have been performed in young and healthy laboratory animals, even though age and hypertension are major risk factors for stroke. To determine the influence of age on the properties of BM MNCs after cerebral ischemia, we compared the efficacy of aged and young BM MNC in an in vitro model of cerebral hypoxia and in an adapted in vivo model of stroke. Human BM MNCs were obtained from healthy young or aged donors and either co-cultured with rat hippocampal slices exposed to oxygen glucose deprivation (OGD), or transplanted intravenously 24 h after permanent middle cerebral artery occlusion in aged (18 months) spontaneously hypertensive rats (SHR). Efficacy was examined by quantification of hippocampal cell death, or respectively, by neurofunctional tests and MR investigations. Co-cultivation with young, but not with aged BM MNCs significantly reduced the hippocampal cell death after OGD. Transplantation of both young and old BM MNCs did not reduce functional deficits or ischemic lesion volume after stroke in aged SHR. These results suggest a significant impact of age on the therapeutic efficacy of BM MNCs after cerebral ischemia.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A simple method for organotypic cultures of nervous tissue.

          Hippocampal slices prepared from 2-23-day-old neonates were maintained in culture at the interface between air and a culture medium. They were placed on a sterile, transparent and porous membrane and kept in petri dishes in an incubator. No plasma clot or roller drum were used. This method yields thin slices which remain 1-4 cell layers thick and are characterized by a well preserved organotypic organization. Pyramidal neurons labelled by extra- and intracellular application of horse radish peroxidase resemble by the organization and complexity of their dendritic processes those observed in situ at a comparable developmental stage. Excitatory and inhibitory synaptic potentials can easily be analysed using extra- or intracellular recording techniques. After a few days in culture, long-term potentiation of synaptic responses can reproducibly be induced. Evidence for a sprouting response during the first days in culture or following sections is illustrated. This technique may represent an interesting alternative to roller tube cultures for studies of the developmental changes occurring during the first days or weeks in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of serial measurements in medical research.

            In medical research data are often collected serially on subjects. The statistical analysis of such data is often inadequate in two ways: it may fail to settle clinically relevant questions and it may be statistically invalid. A commonly used method which compares groups at a series of time points, possibly with t tests, is flawed on both counts. There may, however, be a remedy, which takes the form of a two stage method that uses summary measures. In the first stage a suitable summary of the response in an individual, such as a rate of change or an area under a curve, is identified and calculated for each subject. In the second stage these summary measures are analysed by simple statistical techniques as though they were raw data. The method is statistically valid and likely to be more relevant to the study questions. If this method is borne in mind when the experiment is being planned it should promote studies with enough subjects and sufficient observations at critical times to enable useful conclusions to be drawn. Use of summary measures to analyse serial measurements, though not new, is potentially a useful and simple tool in medical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats.

              Human umbilical cord blood cells (HUCBC) are rich in stem and progenitor cells. In this study we tested whether intravenously infused HUCBC enter brain, survive, differentiate, and improve neurological functional recovery after stroke in rats. In addition, we tested whether ischemic brain tissue extract selectively induces chemotaxis of HUCBC in vitro. Adult male Wistar rats were subjected to transient (2-hour) middle cerebral artery occlusion (MCAO). Experimental groups were as follows: group 1, MCAO alone (n=5); group 2, 3x10(6) HUCBC injected into tail vein at 24 hours after MCAO (n=6) (animals of groups 1 and 2 were killed at 14 days after MCAO); group 3, MCAO alone (n=5); group 4, MCAO injected with PBS at 1 day after stroke (n=8); and group 5, 3x10(6) HUCBC injected into tail vein at 7 days after MCAO (n=5). Rats of groups 3, 4, and 5 were killed at 35 days after MCAO. Behavioral tests (rotarod and Modified Neurological Severity Score [mNSS]) were performed. Immunohistochemical staining was used to identify cells derived from HUCBC. Chemotactic activity of ischemia brain tissue extracts toward HUCBC at different time points was evaluated in vitro. Treatment at 24 hours after MCAO with HUCBC significantly improved functional recovery, as evidenced by the rotarod test and mNSS (P<0.05). Treatment at 7 days after MCAO with HUCBC significantly improved function only on the mNSS (P<0.05). Some HUCBC were reactive for the astrocyte marker glial fibrillary acidic protein and the neuronal markers NeuN and microtubule-associated protein 2. In vitro, significant HUCBC migration activity was present at 24 hours after MCAO (P<0.01) compared with normal brain tissue. Intravenously administered HUCBC enter brain, survive, migrate, and improve functional recovery after stroke. HUCBC transplantation may provide a cell source to treat stroke.
                Bookmark

                Author and article information

                Journal
                Exp Transl Stroke Med
                Exp Transl Stroke Med
                Experimental & Translational Stroke Medicine
                BioMed Central
                2040-7378
                2012
                24 August 2012
                : 4
                : 17
                Affiliations
                [1 ]Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
                [2 ]Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
                [3 ]Department of Urology, University of Leipzig, Leipzig, Germany
                [4 ]Department of Cardiac Surgery, University of Rostock, Rostock, Germany
                [5 ]Institute for Medical Informatics, Statistics & Epidemiology, University of Leipzig, Leipzig, Germany
                Article
                2040-7378-4-17
                10.1186/2040-7378-4-17
                3527344
                22920434
                3fdd8b77-80ce-4c1c-bc23-7d66c07652af
                Copyright ©2012 Wagner et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2012
                : 21 August 2012
                Categories
                Research

                Cardiovascular Medicine
                cell transplantation,age,bone marrow cell transplantation,shr,comorbidity,brain ischemia

                Comments

                Comment on this article