6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of pattern electroretinograms and optical coherence tomography angiography in the diagnosis of normal-tension glaucoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated the correlation between pattern electroretinogram (PERG) and optical coherence tomography angiography (OCTA) parameters for diagnosis in patients with normal-tension glaucoma (NTG). Forty-nine normal individuals (49 eyes) and 60 patients with NTG (60 eyes) were enrolled. OCTA and PERG parameters, such as macular vessel density (VD) and the amplitude of N35–P50 and P50–N95, were measured. Correlation analyses were performed between the parameters, and the area under the curve (AUC) was used to identify their diagnostic ability for NTG. Macular VD and the amplitude of N35–P50 and P50–N95 showed significant differences between the normal individuals and patients with NTG. Correlation between P50 and N95 amplitude and macular VD was significant in the normal and early glaucoma groups. Macular VD showed a higher AUC value (0.730) than that of P50–N95 amplitude (0.645) in the early glaucoma group. In the moderate to severe glaucoma group, the AUC value of the amplitude of P50–N95 (0.907) was higher than that of macular VD (0.876). The results indicate that PERG and OCTA parameters may identify glaucoma in its early stage, based on the severity of glaucomatous damage in patients with NTG.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group.

          To develop the Lens Opacities Classification System III (LOCS III) to overcome the limitations inherent in lens classification using LOCS II. These limitations include unequal intervals between standards, only one standard for color grading, use of integer grading, and wide 95% tolerance limits. The LOCS III contains an expanded set of standards that were selected from the Longitudinal Study of Cataract slide library at the Center for Clinical Cataract Research, Boston, Mass. It consists of six slit-lamp images for grading nuclear color (NC) and nuclear opalescence (NO), five retroillumination images for grading cortical cataract (C), and five retroillumination images for grading posterior subcapsular (P) cataract. Cataract severity is graded on a decimal scale, and the standards have regularly spaced intervals on a decimal scale. The 95% tolerance limits are reduced from 2.0 for each class with LOCS II to 0.7 for nuclear opalescence, 0.7 for nuclear color, 0.5 for cortical cataract, and 1.0 for posterior subcapsular cataract with the LOCS III, with excellent interobserver agreement. The LOCS III is an improved LOCS system for grading slit-lamp and retroillumination images of age-related cataract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma.

            To evaluate the association between vessel density measurements using optical coherence tomography angiography (OCT-A) and severity of visual field loss in primary open-angle glaucoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma

              Purpose To detect macular perfusion defects in glaucoma using projection-resolved optical coherence tomography (OCT) angiography. Design Prospective observation study. Participants 30 perimetric glaucoma and 30 age-matched normal participants were included. Methods One eye of each participant was imaged using 6mm×6mm macular OCT angiography (OCTA) scan pattern by 70-kHz 840-nm spectral-domain OCT. Flow signal was calculated by the split-spectrum amplitude-decorrelation angiography algorithm (SSADA). A projection-resolved OCTA (PR-OCTA) algorithm was used to remove flow projection artifacts. Four en face OCTA slabs were analyzed: the superficial vascular complex (SVC), intermediate capillary plexus (ICP), deep capillary plexus (DCP) and all-plexus retina (SVC+ICP+DCP). The vessel density (VD), defined as the percentage area occupied by flow pixels, was calculated from en face OCTA. A novel algorithm was used to adjust the vessel density to compensate for local variations in OCT signal strength. Main Outcome Measures Macular retinal VD, ganglion cell complex (GCC) thickness, and visual field (VF) sensitivity. Results Focal capillary dropout could be visualized in the SVC, but not the ICP and DVP, in glaucomatous eyes. In the glaucoma group, the SVC and all-plexus retinal VD (mean±SD: 47.2%±7.1% and 73.5%±6.6%) were lower than the normal group (60.5%±4.0% and 83.2%±4.2%, both P <0.001, t test). The ICP and DCP VD were not significantly lower in the glaucoma group. Among the overall macular VD parameters, the SVC VD had the best diagnostic accuracy as measured by the area under the receiver operating characteristic curve (AROC). The accuracy was even better when the worse hemisphere (inferior or superior) was used, achieving an AROC of 0.983 and a sensitivity of 96.7% at a specificity of 95%. Among the glaucoma participants, the hemispheric SVC VD values were highly correlated with the corresponding GCC thickness and VF sensitivity (P<0.003). The reflectance compensation step in VD calculation significantly improved repeatability, normal population variation, and correlation with VF and GCC thickness. Conclusions Based on PR-OCTA, glaucoma preferentially affects perfusion in the SVC in the macula more than the deeper plexuses. Reflectance-compensated SVC VD measurement by PR-OCTA detected glaucoma with high accuracy and could be useful in the clinical evaluation of glaucoma.
                Bookmark

                Author and article information

                Contributors
                yeopy@yuhs.ac
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 June 2021
                10 June 2021
                2021
                : 11
                : 12257
                Affiliations
                [1 ]GRID grid.15444.30, ISNI 0000 0004 0470 5454, Department of Ophthalmology, Yongin Severance Hospital, , Yonsei University College of Medicine, ; Yongin, Republic of Korea
                [2 ]GRID grid.15444.30, ISNI 0000 0004 0470 5454, Department of Ophthalmology, Institute of Vision Research, Severance Hospital, , Yonsei University College of Medicine, ; Seoul, Republic of Korea
                [3 ]GRID grid.15444.30, ISNI 0000 0004 0470 5454, Data Science Team (Biostatistician), Center for Digital Health, Yongin Severance Hospital, , Yonsei University College of Medicine, ; Yongin, Republic of Korea
                Article
                91813
                10.1038/s41598-021-91813-z
                8192937
                34112913
                3ff59047-a9d4-4b99-a49b-192519c039a0
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 October 2020
                : 26 May 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                optic nerve diseases,glaucoma
                Uncategorized
                optic nerve diseases, glaucoma

                Comments

                Comment on this article