3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Better stress coping associated with lower tau in amyloid-positive cognitively unimpaired older adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Research in animals has shown that chronic stress exacerbates tau pathology. In humans, psychological stress has been associated with higher risk of Alzheimer disease clinical syndrome. The objective of this cross-sectional study was to assess the hypothesis that stress coping ability (assessed via the Brief Resilience Scale [BRS]) is associated with tau burden and to evaluate whether these associations differed by sex and amyloid status (A+/A−) in cognitively unimpaired (CU) older adults.

          Methods

          We included 225 CU participants (mean age 70.4 ± 10.2 years, 48% female) enrolled in the population-based Mayo Clinic Study of Aging who completed the BRS and underwent amyloid-PET (Pittsburgh compound B–PET) and tau-PET (AV1451-PET). We fitted multiple regression and analysis of covariance models to assess the associations between BRS and tau-PET and the interaction with amyloid status and sex. We focused on entorhinal cortex (ERC) tau burden and also performed voxel-wise analyses. Age, sex, education, depression, and anxiety were considered as covariates.

          Results

          Higher stress coping ability was associated with lower tau burden in the medial temporal lobe (including ERC) and occipito-temporal and cuneal/precuneal cortices. The association was present in both A+ and A− but weaker in A− CU older adults. There was an interaction between amyloid status and stress coping ability that was restricted to the medial temporal lobe tau such that A+ CU older adults with lower stress coping abilities showed higher tau. There were no significant interactions between stress coping and sex.

          Conclusions

          A faster termination of the stress response (higher coping ability) may limit the negative effects of stress on tau deposition. Conversely, lower stress coping ability may be an early sign of accumulating tau pathology. Longitudinal studies are warranted to clarify whether stress mechanisms act to exacerbate tau pathology or tau influences stress-related brain mechanisms and lowers the ability to cope with stress.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Cortisol levels during human aging predict hippocampal atrophy and memory deficits.

          Elevated glucocorticoid levels produce hippocampal dysfunction and correlate with individual deficits in spatial learning in aged rats. Previously we related persistent cortisol increases to memory impairments in elderly humans studied over five years. Here we demonstrate that aged humans with significant prolonged cortisol elevations showed reduced hippocampal volume and deficits in hippocampus-dependent memory tasks compared to normal-cortisol controls. Moreover, the degree of hippocampal atrophy correlated strongly with both the degree of cortisol elevation over time and current basal cortisol levels. Therefore, basal cortisol elevation may cause hippocampal damage and impair hippocampus-dependent learning and memory in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population.

            The Rochester Epidemiology Project (REP) has maintained a comprehensive medical records linkage system for nearly half a century for almost all persons residing in Olmsted County, Minnesota. Herein, we provide a brief history of the REP before and after 1966, the year in which the REP was officially established. The key protagonists before 1966 were Henry Plummer, Mabel Root, and Joseph Berkson, who developed a medical records linkage system at Mayo Clinic. In 1966, Leonard Kurland established collaborative agreements with other local health care providers (hospitals, physician groups, and clinics [primarily Olmsted Medical Center]) to develop a medical records linkage system that covered the entire population of Olmsted County, and he obtained funding from the National Institutes of Health to support the new system. In 1997, L. Joseph Melton III addressed emerging concerns about the confidentiality of medical record information by introducing a broad patient research authorization as per Minnesota state law. We describe how the key protagonists of the REP have responded to challenges posed by evolving medical knowledge, information technology, and public expectation and policy. In addition, we provide a general description of the system; discuss issues of data quality, reliability, and validity; describe the research team structure; provide information about funding; and compare the REP with other medical information systems. The REP can serve as a model for the development of similar research infrastructures in the United States and worldwide. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging.

              We investigated the prevalence of mild cognitive impairment (MCI) in Olmsted County, MN, using in-person evaluations and published criteria. We evaluated an age- and sex-stratified random sample of Olmsted County residents who were 70-89 years old on October 1, 2004, using the Clinical Dementia Rating Scale, a neurologic evaluation, and neuropsychological testing to assess 4 cognitive domains: memory, executive function, language, and visuospatial skills. Information for each participant was reviewed by an adjudication panel and a diagnosis of normal cognition, MCI, or dementia was made using published criteria. Among 1,969 subjects without dementia, 329 subjects had MCI, with a prevalence of 16.0% (95% confidence interval [CI] 14.4-17.5) for any MCI, 11.1% (95% CI 9.8-12.3) for amnestic MCI, and 4.9% (95% CI 4.0-5.8) for nonamnestic MCI. The prevalence of MCI increased with age and was higher in men. The prevalence odds ratio (OR) in men was 1.54 (95% CI 1.21-1.96; adjusted for age, education, and nonparticipation). The prevalence was also higher in subjects who never married and in subjects with an APOE epsilon3epsilon4 or epsilon4epsilon4 genotype. MCI prevalence decreased with increasing number of years of education (p for linear trend <0.0001). Our study suggests that approximately 16% of elderly subjects free of dementia are affected by MCI, and amnestic MCI is the most common type. The higher prevalence of MCI in men may suggest that women transition from normal cognition directly to dementia at a later age but more abruptly.
                Bookmark

                Author and article information

                Journal
                Neurology
                Neurology
                neurology
                neur
                neurology
                NEUROLOGY
                Neurology
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0028-3878
                1526-632X
                21 January 2020
                14 April 2020
                21 January 2020
                : 94
                : 15
                : e1571-e1579
                Affiliations
                From the Departments of Radiology (E.M.A.-U., V.J.L., A.L.R., C.R.J., P.V.), Health Sciences Research (S.A.P., M.M.M.), Psychiatry and Psychology (M.M. Machulda), and Neurology (D.S.K., M.M. Mielke, R.C.P.), Mayo Clinic, Rochester, MN; and Department of Neurology (Y.E.G.), Mayo Clinic, Scottsdale, AZ.
                Author notes
                Correspondence Dr. Vemuri Vemuri.prashanthi@ 123456mayo.edu

                Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

                The Article Processing Charge was funded by the Mayo Clinic.

                Article
                NEUROLOGY2019980128 00006
                10.1212/WNL.0000000000008979
                7251516
                31964689
                3ffb30a4-3e0e-453e-a548-298a69c07951
                Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                Product
                Funding
                Funded by: NIH
                Award ID: R01 AG56366, U01 AG06786, R01 NS097495, P50 AG16574, R01 AG11378, R01 AG041851, R01 AG55151, R01 AG034676
                Categories
                26
                122
                Article
                Custom metadata
                TRUE
                ONLINE-ONLY

                Comments

                Comment on this article