61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Global Analysis of the Effectiveness of Marine Protected Areas in Preventing Coral Loss

      research-article
      1 , 2 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A variety of human activities have led to the recent global decline of reef-building corals [1], [2]. The ecological, social, and economic value of coral reefs has made them an international conservation priority [2], [3]. The success of Marine Protected Areas (MPAs) in restoring fish populations [4] has led to optimism that they could also benefit corals by indirectly reducing threats like overfishing, which cause coral degradation and mortality [2], [5]. However, the general efficacy of MPAs in increasing coral reef resilience has never been tested.

          Methodology/Principal Findings

          We compiled a global database of 8534 live coral cover surveys from 1969–2006 to compare annual changes in coral cover inside 310 MPAs to unprotected areas. We found that on average, coral cover within MPAs remained constant, while coral cover on unprotected reefs declined. Although the short-term differences between unprotected and protected reefs are modest, they could be significant over the long-term if the effects are temporally consistent. Our results also suggest that older MPAs were generally more effective in preventing coral loss. Initially, coral cover continued to decrease after MPA establishment. Several years later, however, rates of coral cover decline slowed and then stabilized so that further losses stopped.

          Conclusions/Significance

          These findings suggest that MPAs can be a useful tool not only for fisheries management, but also for maintaining coral cover. Furthermore, the benefits of MPAs appear to increase with the number of years since MPA establishment. Given the time needed to maximize MPA benefits, there should be increased emphasis on implementing new MPAs and strengthening the enforcement of existing MPAs.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Marine reserves: size and age do matter.

          Marine reserves are widely used throughout the world to prevent overfishing and conserve biodiversity, but uncertainties remain about their optimal design. The effects of marine reserves are heterogeneous. Despite theoretical findings, empirical studies have previously found no effect of size on the effectiveness of marine reserves in protecting commercial fish stocks. Using 58 datasets from 19 European marine reserves, we show that reserve size and age do matter: Increasing the size of the no-take zone increases the density of commercial fishes within the reserve compared with outside; whereas the size of the buffer zone has the opposite effect. Moreover, positive effects of marine reserve on commercial fish species and species richness are linked to the time elapsed since the establishment of the protection scheme. The reserve size-dependency of the response to protection has strong implications for the spatial management of coastal areas because marine reserves are used for spatial zoning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems.

            Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish ( 45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ecology. Coral reefs and the global network of Marine Protected Areas.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                17 February 2010
                : 5
                : 2
                : e9278
                Affiliations
                [1 ]Curriculum in Ecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [2 ]Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
                Institut Pluridisciplinaire Hubert Curien, France
                Author notes

                Conceived and designed the experiments: ERS JFB. Performed the experiments: ERS JFB. Analyzed the data: ERS. Contributed reagents/materials/analysis tools: ERS JFB. Wrote the paper: ERS JFB.

                [¤]

                Current address: Center for Applied Biodiversity Science, Conservation International, Arlington, Virginia, United States of America

                Article
                09-PONE-RA-13530R1
                10.1371/journal.pone.0009278
                2822846
                20174644
                3ffd9ad4-123b-44c6-bbf1-2054a3345edb
                Selig, Bruno. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 October 2009
                : 19 January 2010
                Page count
                Pages: 7
                Categories
                Research Article
                Ecology
                Ecology/Community Ecology and Biodiversity
                Ecology/Conservation and Restoration Ecology
                Ecology/Global Change Ecology
                Ecology/Marine and Freshwater Ecology
                Ecology/Spatial and Landscape Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article